Distribution Amplitudes of the Nucleon and the Roper Resonance

C. Mezrag

Argonne National Laboratory

May 29th, 2017

In collaboration with: C.D. Roberts and J. Segovia

Office of Science

C. Mezrag (ANL)

Nucleon DA

1 / 35

Hadron Structure Gastronomy

C. Mezrag (ANL)

Nucleon DA

・ ヨ ト ・ ヨ ト ・ ヨ ト ・ シ へ ペ
May 29th, 2017 2 / 35

Image: Image:

Hadron Structure Gastronomy

• Tourte Hadronique (Hadron|*O*|Hadron)

- ► PDF,
- Form Factors,
- ► GPDs, TMDs,
- GTMDs.

Hadron Structure Gastronomy

• Tourte Hadronique (Hadron|*O*|Hadron)

- PDF,
- Form Factors,
- ► GPDs, TMDs,
- GTMDs.
- Tarte Hadronique $\langle Vacuum | O | Hadron \rangle$

- Bethe-Salpeter and Faddeev wave functions,
- Lightfront wave functions,
- Parton Distribution Amplitudes.

Hadrons seen as Fock States

• Lightfront quantization allows to expand hadrons on a Fock basis:

$$|P,\pi
angle \propto \sum_{eta} \Psi_{eta}^{qar{q}} |qar{q}
angle + \sum_{eta} \Psi_{eta}^{qar{q},qar{q}} |qar{q},qar{q}
angle + \dots$$

 $|P,N
angle \propto \sum_{eta} \Psi_{eta}^{qqq} |qqq
angle + \sum_{eta} \Psi_{eta}^{qqq,qar{q}} |qqq,qar{q}
angle + \dots$

A ∃ ► ∃ = < < <</p>

Hadrons seen as Fock States

• Lightfront quantization allows to expand hadrons on a Fock basis:

$$|P,\pi
angle\propto\sum_{eta}\Psi_{eta}^{qar{q}}|qar{q}
angle+\sum_{eta}\Psi_{eta}^{qar{q},qar{q}}|qar{q},qar{q}
angle+\ldots$$

$$|P,N
angle\propto\sum_{eta}\Psi_{eta}^{qqq}|qqq
angle+\sum_{eta}\Psi_{eta}^{qqq,qar{q}}|qqq,qar{q}
angle+\ldots$$

• Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^N

Hadrons seen as Fock States

• Lightfront quantization allows to expand hadrons on a Fock basis:

$$|P,\pi
angle\propto\sum_{eta}\Psi_{eta}^{qar{q}}|qar{q}
angle+\sum_{eta}\Psi_{eta}^{qar{q},qar{q}}|qar{q},qar{q}
angle+\ldots$$

$$|P,N
angle\propto\sum_{eta}\Psi_{eta}^{qqq}|qqq
angle+\sum_{eta}\Psi_{eta}^{qqq,qar{q}}|qqq,qar{q}
angle+\ldots$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^N
- Schematically a distribution amplitude φ is related to the LFWF through:

$$arphi(x) \propto \int rac{\mathrm{d}^2 k_\perp}{(2\pi)^2} \Psi(x,k_\perp)$$

S. Brodsky and G. Lepage, PRD 22, (1980)

• 3 bodies matrix element:

 $\langle 0|\epsilon^{ijk}u^i_{lpha}(z_1)u^j_{eta}(z_2)d^k_{\gamma}(z_3)|P
angle$

• 3 bodies matrix element expanded at leading twist:

$$\langle 0|\epsilon^{ijk}u_{\alpha}^{i}(z_{1})u_{\beta}^{j}(z_{2})d_{\gamma}^{k}(z_{3})|P\rangle = \frac{1}{4} \left[\left(\not pC \right)_{\alpha\beta} \left(\gamma_{5}N^{+} \right)_{\gamma} V(z_{i}^{-}) \right. \\ \left. + \left(\not p\gamma_{5}C \right)_{\alpha\beta} \left(N^{+} \right)_{\gamma} A(z_{i}^{-}) - \left(ip^{\mu}\sigma_{\mu\nu}C \right)_{\alpha\beta} \left(\gamma^{\nu}\gamma_{5}N^{+} \right)_{\gamma} T(z_{i}^{-}) \right]$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

• 3 bodies matrix element expanded at leading twist:

$$\langle 0|\epsilon^{ijk}u^{i}_{\alpha}(z_{1})u^{j}_{\beta}(z_{2})d^{k}_{\gamma}(z_{3})|P\rangle = \frac{1}{4} \left[\left(\not p C \right)_{\alpha\beta} \left(\gamma_{5} N^{+} \right)_{\gamma} V(z_{i}^{-}) \right. \\ \left. + \left(\not p \gamma_{5} C \right)_{\alpha\beta} \left(N^{+} \right)_{\gamma} A(z_{i}^{-}) - \left(i p^{\mu} \sigma_{\mu\nu} C \right)_{\alpha\beta} \left(\gamma^{\nu} \gamma_{5} N^{+} \right)_{\gamma} T(z_{i}^{-}) \right]$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

• Usually, one defines $\varphi = V - A$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇◇◇

• 3 bodies matrix element expanded at leading twist:

$$\langle 0|\epsilon^{ijk}u^{i}_{\alpha}(z_{1})u^{j}_{\beta}(z_{2})d^{k}_{\gamma}(z_{3})|P\rangle = \frac{1}{4} \left[\left(\not p C \right)_{\alpha\beta} \left(\gamma_{5} N^{+} \right)_{\gamma} V(z_{i}^{-}) \right. \\ \left. + \left(\not p \gamma_{5} C \right)_{\alpha\beta} \left(N^{+} \right)_{\gamma} A(z_{i}^{-}) - \left(i p^{\mu} \sigma_{\mu\nu} C \right)_{\alpha\beta} \left(\gamma^{\nu} \gamma_{5} N^{+} \right)_{\gamma} T(z_{i}^{-}) \right]$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi = V A$
- 3 bodies Fock space interpretation (leading twist):

$$\begin{aligned} |P,\uparrow\rangle &= \int \frac{[\mathrm{d}x]}{8\sqrt{6x_1x_2x_3}} |uud\rangle \otimes [\varphi(x_1,x_2,x_3)|\uparrow\downarrow\uparrow\rangle \\ &+\varphi(x_2,x_1,x_3)|\downarrow\uparrow\uparrow\rangle - 2T(x_1,x_2,x_2)|\uparrow\uparrow\downarrow\rangle] \end{aligned}$$

• 3 bodies matrix element expanded at leading twist:

$$\langle 0|\epsilon^{ijk}u^{i}_{\alpha}(z_{1})u^{j}_{\beta}(z_{2})d^{k}_{\gamma}(z_{3})|P\rangle = \frac{1}{4} \left[\left(\not p C \right)_{\alpha\beta} \left(\gamma_{5} N^{+} \right)_{\gamma} V(z_{i}^{-}) \right. \\ \left. + \left(\not p \gamma_{5} C \right)_{\alpha\beta} \left(N^{+} \right)_{\gamma} A(z_{i}^{-}) - \left(i p^{\mu} \sigma_{\mu\nu} C \right)_{\alpha\beta} \left(\gamma^{\nu} \gamma_{5} N^{+} \right)_{\gamma} T(z_{i}^{-}) \right]$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi = V A$
- 3 bodies Fock space interpretation (leading twist):

$$\begin{aligned} |P,\uparrow\rangle &= \int \frac{[\mathrm{d}x]}{8\sqrt{6x_1x_2x_3}} |uud\rangle \otimes [\varphi(x_1,x_2,x_3)|\uparrow\downarrow\uparrow\rangle \\ &+\varphi(x_2,x_1,x_3)|\downarrow\uparrow\uparrow\rangle - 2T(x_1,x_2,x_2)|\uparrow\uparrow\downarrow\rangle] \end{aligned}$$

Isospin symmetry:

$$2T(x_1, x_2, x_3) = \varphi(x_1, x_3, x_2) + \varphi(x_2, x_3, x_1)$$

May 29th, 2017 4 / 35

Evolution and Asymptotic results

• Both φ and ${\cal T}$ are scale dependent objects: they obey evolution equations

▲ Ξ ► Ξ Ξ < • ○ < ○</p>

Evolution and Asymptotic results

- \bullet Both φ and ${\cal T}$ are scale dependent objects: they obey evolution equations
- At large scale, they both yield the so-called asymptotic DA φ_{AS} :

Evolution and Asymptotic results

- \bullet Both φ and ${\cal T}$ are scale dependent objects: they obey evolution equations
- At large scale, they both yield the so-called asymptotic DA φ_{AS} :

May 29th, 2017 5 / 35

∃▶ ∃|= √20

6 / 35

May 29th, 2017

< □ > < 同 >

C. Mezrag (ANL)

Nucleon DA

May 29th, 2017 6 / 35

C. Mezrag (ANL)

Nucleon DA

May 29th, 2017 6 / 35

C. Mezrag (ANL)

Nucleon DA

May 29th, 2017 6 / 35

 $(\exists \land \langle \exists \rangle \exists \exists \land \neg \rangle$ May 29th, 2017 7

7 / 35

- QCD Sum Rules
 - V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246 (1984)
- Relativistic quark model
 - Z. Dziembowski, PRD 37 (1988)
- Scalar diquark clustering
 - Z. Dziembowski and J. Franklin, PRD 42 (1990)
- Phenomenological fit
 - J. Bolz and P. Kroll, Z. Phys. A 356 (1996)
- Lightcone quark model
 - B. Pasquini et al., PRD 80 (2009)
- Lightcone sum rules
 - I. Anikin et al., PRD 88 (2013)
- Lattice Mellin moment computation
 - G. Bali et al., JHEP 2016 02

May 29th, 2017

8 / 35

• The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
 - ► Scalar diquarks, whose mass is roughly 2/3 of the nucleon mass,
 - Axial-Vector (AV) diquarks, whose mass is larger than the scalar one.

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
 - ► Scalar diquarks, whose mass is roughly 2/3 of the nucleon mass,
 - Axial-Vector (AV) diquarks, whose mass is larger than the scalar one.
- Can we understand the nucleon DA in terms of quark-diquarks correlations?

C. Mezrag (ANL)

▲ Ξ ► Ξ Ξ · · · ○ ○ ○

9 / 35

May 29th, 2017

• Operator point of view for every DA (and at every twist):

$$\langle 0|\epsilon^{ijk} \left(u^{i}_{\uparrow}(z_{1})C \not n u^{j}_{\downarrow}(z_{2}) \right) \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \to \varphi(x_{i}) \to O_{\varphi},$$

$$\langle 0|\epsilon^{ijk} \left(u^{i}_{\uparrow}(z_{1})Ci\sigma_{\perp\nu}n^{\nu}u^{j}_{\uparrow}(z_{2}) \right) \gamma^{\perp} \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \to T(x_{i}) \to O_{T},$$

Braun et al., Nucl. Phys. B589 (2000)

• Operator point of view for every DA (and at every twist):

$$\langle 0|\epsilon^{ijk} \left(u^{i}_{\uparrow}(z_{1})C \not n u^{j}_{\downarrow}(z_{2}) \right) \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \to \varphi(x_{i}) \to O_{\varphi},$$

$$\langle 0|\epsilon^{ijk} \left(u^{i}_{\uparrow}(z_{1})Ci\sigma_{\perp\nu}n^{\nu}u^{j}_{\uparrow}(z_{2}) \right) \gamma^{\perp} \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \to T(x_{i}) \to O_{T},$$

Braun et al., Nucl. Phys. B589 (2000)

May 29th, 2017

9 / 35

• We can apply it on the wave function:

• Operator point of view for every DA (and at every twist):

$$\langle 0|\epsilon^{ijk} \left(u^{i}_{\uparrow}(z_{1})C \not n u^{j}_{\downarrow}(z_{2}) \right) \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \to \varphi(x_{i}) \to O_{\varphi},$$

$$\langle 0|\epsilon^{ijk} \left(u^{i}_{\uparrow}(z_{1})Ci\sigma_{\perp\nu}n^{\nu}u^{j}_{\uparrow}(z_{2}) \right) \gamma^{\perp} \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \to T(x_{i}) \to O_{T},$$

Braun et al., Nucl.Phys. B589 (2000)

• We can apply it on the wave function:

$$\bigcap_{\sigma_{\varphi}} O_{\varphi} = \bigcap_{\sigma_{\varphi}} O_{\varphi} + \bigcap_{\sigma_{\varphi}} O_{\varphi} + \bigcap_{\sigma_{\varphi}} O_{\varphi}$$

• Operator point of view for every DA (and at every twist):

$$\langle 0|\epsilon^{ijk} \left(u^{i}_{\uparrow}(z_{1}) C \not n u^{j}_{\downarrow}(z_{2}) \right) \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \to \varphi(x_{i}) \to O_{\varphi},$$

$$\langle 0|\epsilon^{ijk} \left(u^{i}_{\uparrow}(z_{1}) C i \sigma_{\perp\nu} n^{\nu} u^{j}_{\uparrow}(z_{2}) \right) \gamma^{\perp} \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \to T(x_{i}) \to O_{T},$$

Braun et al., Nucl. Phys. B589 (2000)

• We can apply it on the wave function:

• The operator then selects the relevant component of the wave function.

C. Mezrag (ANL)

Nucleon DA

May 29th, 2017 9 / 35

• In the scalar diquark case, only one contribution remains (φ case):

• In the scalar diquark case, only one contribution remains (φ case):

• The contraction of the Dirac indices between the single quark and the diquark makes it hard to understand.

• In the scalar diquark case, only one contribution remains (φ case):

- The contraction of the Dirac indices between the single quark and the diquark makes it hard to understand.
- The way to write the nucleon Dirac structure is not unique, and can be modified (Fierz identity):

$$O_{\varphi} = O_{\varphi}$$

10 / 35

• In the scalar diquark case, only one contribution remains (φ case):

- The contraction of the Dirac indices between the single quark and the diquark makes it hard to understand.
- The way to write the nucleon Dirac structure is not unique, and can be modified (Fierz identity):

We recognise the leading twist DA of a scalar diquark

 $\langle 0|\epsilon^{ijk}\left(u^i_{\uparrow}(z_1)C \not n u^j_{\downarrow}(z_2)
ight) \not n d^k_{\uparrow}(z_3)|P,\lambda
angle
ightarrow arphi(x_i)
ightarrow O_{arphi},$ $\langle 0|\epsilon^{ijk}\left(u^i_{\uparrow}(z_1)Ci\sigma_{\perp\nu}n^{\nu}u^j_{\uparrow}(z_2)\right)\gamma^{\perp}pd^k_{\uparrow}(z_3)|P,\lambda\rangle \rightarrow T(x_i) \rightarrow O_T,$

May 29th, 2017 11 / 35

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ■ ● ●

 $\langle 0|\epsilon^{ijk}\left(u^{i}_{\uparrow}(z_{1})C \not n u^{j}_{\downarrow}(z_{2})\right) \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle
ightarrow \varphi(x_{i})
ightarrow O_{\varphi},$ $\langle 0|\epsilon^{ijk}\left(u^{i}_{\uparrow}(z_{1})Ci\sigma_{\perp\nu}n^{\nu}u^{j}_{\uparrow}(z_{2})\right)\gamma^{\perp}pd^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \rightarrow T(x_{i})\rightarrow O_{T},$

May 29th, 2017 11 / 35

 $\langle 0|\epsilon^{ijk}\left(u^{i}_{\uparrow}(z_{1})C \not n u^{j}_{\downarrow}(z_{2})\right) \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \rightarrow \varphi(x_{i}) \rightarrow O_{\varphi},$ $\langle 0|\epsilon^{ijk}\left(u^{i}_{\uparrow}(z_{1})Ci\sigma_{\perp\nu}n^{\nu}u^{j}_{\uparrow}(z_{2})\right)\gamma^{\perp}pd^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \rightarrow T(x_{i})\rightarrow O_{T},$

May 29th, 2017 11 / 35

 $\langle 0|\epsilon^{ijk}\left(u^{i}_{\uparrow}(z_{1})C \not n u^{j}_{\downarrow}(z_{2})\right) \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle
ightarrow arphi(x_{i})
ightarrow O_{arphi},$ $\langle 0|\epsilon^{ijk}\left(u^{i}_{\uparrow}(z_{1})Ci\sigma_{\perp\nu}n^{\nu}u^{j}_{\uparrow}(z_{2})\right)\gamma^{\perp}pd^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \rightarrow T(x_{i})\rightarrow O_{T},$

AV Contributions

 $\langle 0|\epsilon^{ijk}\left(u^{i}_{\uparrow}(z_{1})C \not n u^{j}_{\downarrow}(z_{2})\right) \not n d^{k}_{\uparrow}(z_{3})|P,\lambda\rangle
ightarrow \varphi(x_{i})
ightarrow O_{\varphi},$ $\langle 0|\epsilon^{ijk}\left(u^{i}_{\uparrow}(z_{1})Ci\sigma_{\perp\nu}n^{\nu}u^{j}_{\uparrow}(z_{2})\right)\gamma^{\perp}pd^{k}_{\uparrow}(z_{3})|P,\lambda\rangle \rightarrow T(x_{i})\rightarrow O_{T},$

Modeling the Diquarks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Scalar diquark I: the point-like case

• Quark propagator:

$$S(q) = \frac{-i q + M}{q^2 + M^2}$$

C. Mezrag (ANL)

May 29th, 2017 13 / 35

▲ ∃ ▶ ∃ ∃ = 𝔊

Scalar diquark I: the point-like case

• Quark propagator:

$$S(q) = \frac{-i\not q + M}{q^2 + M^2}$$

• Bethe-Salpeter amplitude (1 out of 4 structures):

$$\Gamma_{\rm PL}^{0+}(q,K) = i\gamma_5 C \mathcal{N}^{0+}$$

Scalar diquark I: the point-like case

• Quark propagator:

$$S(q) = \frac{-i\not q + M}{q^2 + M^2}$$

• Bethe-Salpeter amplitude (1 out of 4 structures):

$$\Gamma^{0+}_{\mathrm{PL}}(q,K) = i\gamma_5 C \mathcal{N}^{0+}$$

• This point-like case leads to a flat DA:

$$\phi_{\mathrm{PL}}(x) = 1$$

Scalar diquark II: the Nakanishi case

• Quark propagator:

$$S(q) = \frac{-i\not q + M}{q^2 + M^2}$$

<=> = = < <</p>

Scalar diquark II: the Nakanishi case

• Quark propagator:

$$S(q) = \frac{-i\not q + M}{q^2 + M^2}$$

• Bethe-Salpeter amplitude (1 out of 4 structures):

$$\Gamma_{\mathrm{PL}}^{0+}(q, \mathcal{K}) = i\gamma_5 C \mathcal{N}^{0+} \int_{-1}^{1} \mathrm{d}z \frac{(1-z^2)}{\left[\left(q - \frac{1-z}{2}\mathcal{K}\right)^2 + \Lambda_q^2\right]}$$

May 29th, 2017 14 / 35

Scalar diquark II: the Nakanishi case

• Quark propagator:

$$S(q) = \frac{-i\not q + M}{q^2 + M^2}$$

• Bethe-Salpeter amplitude (1 out of 4 structures):

$$\Gamma_{\mathrm{PL}}^{0+}(q, \mathcal{K}) = i\gamma_5 C \mathcal{N}^{0+} \int_{-1}^{1} \mathrm{d}z \frac{(1-z^2)}{\left[\left(q - \frac{1-z}{2}\mathcal{K}\right)^2 + \Lambda_q^2\right]}$$

• The Nakanishi case leads to a non trivial DA:

$$\phi(x) = 1 - rac{M^2}{K^2} rac{\ln\left[1 + rac{K^2}{M^2}x(1-x)
ight]}{x(1-x)}$$

May 29th, 2017

14 / 35

Scalar DA behaviour

$$\phi(x) \propto 1 - rac{M^2}{K^2} rac{\ln\left[1 + rac{K^2}{M^2}x(1-x)
ight]}{x(1-x)}$$

May 29th, 2017 15 / 35

리님

Scalar DA behaviour

Pion figure from L. Chang et al., PRL 110 (2013)

May 29th, 2017 15 / 35

ELE DQC

Scalar DA behaviour

Pion figure from L. Chang et al., PRL 110 (2013)

This extended version of the DA seems promising!

C. Mezrag (ANL)

Nucleon DA

May 29th, 2017 15 / 35

AV diquark DA

• Quark propagator:

$$S(q) = \frac{-iq + M}{q^2 + M^2}$$

◆□> <個> <目> <目> <目> <目> <のQの</p>

AV diquark DA

• Quark propagator:

$$S(q) = \frac{-i\not q + M}{q^2 + M^2}$$

• Bethe-Salpeter amplitude (2 out of 8 structures):

$$\Gamma^{\mu}_{\rm PL}(q, K) = (\mathcal{N}_{1}\tau^{\mu}_{1} + \mathcal{N}_{2}\tau^{\mu}_{2}) C \int_{-1}^{1} \mathrm{d}z \frac{(1-z^{2})}{\left[\left(q - \frac{1-z}{2}K\right)^{2} + \Lambda^{2}_{q}\right]}$$

$$\tau_1^{\mu} = i\left(\gamma^{\mu} - \mathcal{K}^{\mu}\frac{\mathcal{K}}{\mathcal{K}^2}\right) \to \text{Chiral even}$$

$$\tau_2^{\mu} = \frac{\kappa \cdot q}{\sqrt{q^2(\kappa - q)^2}\sqrt{\kappa^2}} \left(-i\tau_1^{\mu} \not q + i \not q \tau_1^{\mu}\right) \to \text{Chiral odd}$$

< □ > < 同 >

< 言 > < 言 > 三 = うへの May 29th, 2017 16 / 35

Comparison with the ρ meson

 ρ figure from F. Gao *et al.*, PRD 90 (2014)

э May 29th, 2017 17 / 35

글 날 .

Comparison with the ρ meson

 ρ figure from F. Gao et al., PRD 90 (2014)

- Same "shape ordering" $\rightarrow \phi_{\perp}$ is flatter in both cases.
- Farther apart compared to the ρ meson case.

May 29th, 2017 17 / 35

315

Modeling the Faddeev Amplitude

< □ > < 同 >

Faddeev Amplitude

• AV case (2 out of 6 structures):

$$\mathcal{A}^{\mu}(\mathcal{K}, \mathcal{P}) = \left(\gamma_5 \gamma^{\mu} - i\gamma_5 \hat{\mathcal{P}}^{\mu}\right) \int_{-1}^{1} \mathrm{d}z \frac{(1-z^2)}{\left[\left(\mathcal{K} - \frac{1-z}{2}\mathcal{P}\right)^2 + \Lambda_N^2\right]}$$

C. Mezrag (ANL)

May 29th, 2017 19 / 35

· ▲ 프 ▶ ▲ 프 ▶ · 프 | 프 • ?)

Results in the scalar channel

Results in the scalar channel

May 29th, 2017 20 / 35

1

Results in the scalar channel

Comparison with lattice I

Lattice data from V.Braun et al, PRD 89 (2014)

G. Bali et al., JHEP 2016 02

May 29th, 2017 21 / 35

◆□> <個> <目> <目> <目> <目> <のQの</p>

Nucleon DA

Complete results for φ

• We use the prediction from the Faddeev equation to weight the scalar and AV contributions 65/35:

May 29th, 2017 22 / 35

Comparison with lattice II

Lattice data from V.Braun et al, PRD 89 (2014)

G. Bali et al., JHEP 2016 02

- E

C. Mezrag (ANL)

Nucleon DA

May 29th, 2017 23 / 35

三日 のへの

Comparison with lattice II

Lattice data from V.Braun et al, PRD 89 (2014)

G. Bali et al., JHEP 2016 02 э

C. Mezrag (ANL)

Nucleon DA

May 29th, 2017 23 / 35

三日 のへの

Comparison with lattice III

Lattice data from V.Braun et al, PRD 89 (2014)

< 口 > < 同

G. Bali et al., JHEP 2016 02

C. Mezrag (ANL)

Nucleon DA

э May 29th, 2017 24 / 35

三日 のへの

Evolution

- Evolution equations are known but not the general eigenvectors.
- We have computed the 36 first eigenvectors and eigenvalues to evolve the Nucleon DA.
- Polynomial fit on $(\nu_1(Q^2), \nu_2(Q^2), \omega_{N,n}(x_i, Q^2))$:

$$\begin{split} \varphi(x_i,Q^2) &= 120 x_1^{\nu_1(Q^2) - 1/2} (x_2 x_3)^{\nu_2(Q^2) - 1/2} \\ &\times \left(\omega_0(Q^2) + \sum_{N=1}^2 \sum_{n=0}^N \omega_{N,n}(Q^2) \Omega_{N,n}^{1,(2,3)}(x_i,\nu_1(Q^2),\nu_2(Q^2)) \right), \end{split}$$

- Idea: Fit the approriate basis to get a small number of relevant moments.
- At original scale, we found ($\nu_1\simeq 1.3, \nu_2\simeq 1.05$), close to what we get for the mesons.

C. Mezrag (ANL)

May 29th, 2017 25 / 35

The Roper Resonnance

• Everything done before can actually be extended to the Roper case.

<=> = = < <>

- Everything done before can actually be extended to the Roper case.
- The only difference holds in the Faddeev amplitude model.

▲ ∃ ▶ ∃ ∃ ■

- Everything done before can actually be extended to the Roper case.
- The only difference holds in the Faddeev amplitude model.
- In particular in the Chebychev moments:

figures from J. Segovia et al., PRL 115 (2015)

- Everything done before can actually be extended to the Roper case.
- The only difference holds in the Faddeev amplitude model.
- In particular in the Chebychev moments:

figures from J. Segovia et al., PRL 115 (2015)

 This behaviour can be obtained by adding a zero in the Faddeev amplitude through:

$$\int_{-1}^{1} \mathrm{d}z \frac{(1-z^2)}{\left[\left(\mathcal{K}-\frac{1-z}{2}P\right)^2 + \Lambda_N^2\right]} \to \int_{-1}^{1} \mathrm{d}z \frac{(1-z^2)(z-\kappa)}{\left[\left(\mathcal{K}-\frac{1-z}{2}P\right)^2 + \Lambda_R^2\right]}$$

Scalar and AV components

Complete results for φ_R

100 % Scalar

The road To the Form Ractors

C. Mezrag (ANL)

Nucleon DA

May 29th, 2017 30 / 35

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のQ@

Form Factors

$$\begin{split} F_1(Q^2) &= \mathcal{N} \int [\mathrm{d} x_i] [\mathrm{d} y_i] \left[\varphi(x_i, \widetilde{Q}_x^2) \mathcal{H}_{\varphi}(x_i, y_i, Q^2) \varphi(y_i, \widetilde{Q}_y^2) \right. \\ &+ \mathcal{T}(x_i, \widetilde{Q}_x^2) \mathcal{H}_{\mathcal{T}}(x_i, y_i, Q^2) \mathcal{T}(y_i, \widetilde{Q}_y^2) \right] \end{split}$$

Form Factors

$$\begin{split} F_1(Q^2) &= \mathcal{N} \int [\mathrm{d} x_i] [\mathrm{d} y_i] \left[\varphi(x_i, \widetilde{Q}_x^2) H_{\varphi}(x_i, y_i, Q^2) \varphi(y_i, \widetilde{Q}_y^2) \right. \\ &\left. + \mathcal{T}(x_i, \widetilde{Q}_x^2) H_{\mathcal{T}}(x_i, y_i, Q^2) \mathcal{T}(y_i, \widetilde{Q}_y^2) \right] \end{split}$$

- Kernel well known since more than 30 years...
- ...but different groups have argue different choices for the treatment of scales:
 - for the DA : $\varphi(Q^2), \varphi((\min(x_i) \times Q)^2)...,$
 - ► for the strong coupling constant : $\alpha_{s}(Q^{2}), \alpha_{s}(< x_{i} > Q^{2}), \alpha_{s}^{reg}(g(x_{i}, y_{j})Q^{2})$

- The form factor is only the first Mellin Moment of GPDs and GDAs.
- The perturbative formula have been generalised to GPDs at large *t* and GDAs at large *s* for mesons and baryons.

M. Diehl *et al.*, PRD 61, (2000) 074029
C. Vogt, PRD 64, (2001), 057501
P. Hoodboy *et al.*, PRL 92 (2004) 012003
B. Pire *et al.*, PLB 639, (2006) 642-651

- The form factor is only the first Mellin Moment of GPDs and GDAs.
- The perturbative formula have been generalised to GPDs at large *t* and GDAs at large *s* for mesons and baryons.

M. Diehl *et al.*, PRD 61, (2000) 074029
C. Vogt, PRD 64, (2001), 057501
P. Hoodboy *et al.*, PRL 92 (2004) 012003
B. Pire *et al.*, PLB 639, (2006) 642-651

May 29th, 2017

32 / 35

Can we use our DA models to get relevant information on GPDs and GDAs for mesons and baryons?

- Both nucleon DAs φ and T can be described using a quark-diquark approximation.
- We show how the diquark types and diquarks polarisations were selected.
- The comparison with lattice computation explains how the different diquarks contribute to the total DAs, and the respective sensitivity of the latter to the AV-diquarks.
- The comparison with the lattice data is encouraging.
- It is possible to extend the work on the nucleon to the Roper case.
- In the Roper case, the results of individual diquarks contributions seem to be consistent with a *n* = 1 excited state.
- Working on an Evolution code.
- Computations of the Form Factors are in progress.

- The use of the numerical solutions of the DSE-Faddeev Equation will certainly modify the previous results, and improve our understanding of the physics of the nucleon.
- Transition form factors.
- Large-t GPDs / Large-s GDAs
- Other resonances, like the N(1535), on which Lattice QCD shows surprising results.

Thank you for your attention

< 口 > < 同

Back up slides

Pion distribution amplitude

$$\phi_{As}(x) = 6x(1-x)$$

L. Chang et al. (2013)

L. Chang et al. (2013)

37 / 35

May 29th, 2017

- Broad DSE pion DA is much more consistent with the form factor than the asymptotic one.
- The scale when the asymptotic DA become relevant is huge.

C. Mezrag (ANL)

N(1535)

Figure from V. Braun et la., Phys. Rev. D89, 094511 (2014)

May 29th, 2017 38 / 35

ъ