

Excited baryons in the extended SU(3) chiral quark-soliton model

Hyun-Chul Kim

Department of Physics Inha University

Orsay Workshop on Nucleon and Resonance Structure with Hard Exclusive Processes, 29-31 May 2017

Physics for excited baryons

Spontaneous breaking

For excited baryons ($q\bar{q}$ excitations).

Vector, Axial-vector, and tensor mean fields for higher-lying excited states

Question: How can one incorporate them to describe excited baryons?

Puzzles in excited baryon spectra

- Missing Resonances: Too many resonances were predicted. Additional symmetries?
- Mass orderings: N*(1440) & N*(1535), N*(1520)(3/2-) & N*(1535)(1/2-)
- Broad widths: Large coupling constants.
- Question: How can one resolve these puzzles?

Merits of the chiral quark-soliton model

- Fully relativistic field theoretic model.
- Related to QCD via the Instanton vacuum.
- Renormalisation scale is naturally given. $1/\rho\approx 600\,{\rm MeV}$
- All relevant parameters were fixed already.

$$egin{aligned} \mathcal{Z}_{\chi ext{QSM}} &= \int \mathcal{D}U \exp(-S_{ ext{eff}}) \ & S_{ ext{eff}} &= -N_c ext{Tr} \ln D(U) \end{aligned}$$

Merits of the chiral quark-soliton model

- Fully relativistic field theoretic model.
- Related to QCD via the Instanton vacuum.
- Renormalisation scale is naturally given. $1/\rho\approx 600\,{\rm MeV}$
- All relevant parameters were fixed already.

$$egin{aligned} \mathcal{Z}_{\chi ext{QSM}} &= \int \mathcal{D}U \exp(-S_{ ext{eff}}) \ & S_{ ext{eff}} &= -N_c ext{Tr} \ln D(U)^{-D(U)} = \partial_4 + H(U) + \hat{m} \end{aligned}$$

HChK et al. Prog. Part. Nucl. Phys. Vol.37, 91 (1996)

Merits of the chiral quark-soliton model

- Fully relativistic field theoretic model.
- Related to QCD via the Instanton vacuum.
- Renormalisation scale is naturally given. $1/\rho\approx 600\,{\rm MeV}$
- All relevant parameters were fixed already.

$$egin{aligned} \mathcal{Z}_{\chi ext{QSM}} &= \int \mathcal{D}U \exp(-S_{ ext{eff}}) & H(U) = -i \gamma_4 \gamma_i \partial_i + \gamma_4 M U^{\gamma_5} \ & S_{ ext{eff}} &= -N_c ext{Tr} \ln D(U) & D(U) = \partial_4 + H(U) + \hat{m} \end{aligned}$$

HChK et al. Prog. Part. Nucl. Phys. Vol.37, 91 (1996)

Merits of the chiral quark-soliton model

- Fully relativistic field theoretic model.
- Related to QCD via the Instanton vacuum.
- Renormalisation scale is naturally given. $1/\rho\approx 600\,{\rm MeV}$
- All relevant parameters were fixed already.

HChK et al. Prog. Part. Nucl. Phys. Vol.37, 91 (1996)

Classical solitons

 $\langle J_N(\vec{x},T) J_N^{\dagger}(\vec{y},-T) \rangle_0 \sim \Pi_N(T) \sim e^{-[(N_c E_{\rm val} + E_{\rm sea})T]}$

 $\frac{\delta}{\delta U}(N_c E_{\text{val}} + E_{\text{sea}}) = 0 \implies M_{\text{cl}} = N_c E_{\text{val}}(U_c) + E_{\text{sea}}(U_c)$

Hedgehog Ansatz:

$$U_{\mathrm{SU}(2)} = \exp\left[i\gamma_5\mathbf{n}\cdot\boldsymbol{\tau}\boldsymbol{P}(\boldsymbol{r})\right]$$

hedgehog

HChK et al. Prog. Part. Nucl. Phys. Vol.95, (1995)

Collective (Zero-mode) quantisation

HChK et al. Prog. Part. Nucl. Phys. Vol.95, (1995)

Extended XQSM

How to incorporate quark confinement

 $\mathcal{S}_{\text{eff}} = -N_c \text{Trlog} \left[i \partial \!\!\!/ + i \hat{m} + i M(r) U^{\gamma_5} \right]$

How to incorporate quark confinement

 $\mathcal{S}_{\text{eff}} = -N_c \text{Trlog} \left[i \partial \!\!\!/ + i \hat{m} + i M(r) U^{\gamma_5} \right]$

 $M(r)U^{\gamma_5}(r) = S(r)\left[\cos P(r) + i\gamma_5\tau \cdot \mathbf{n}\sin P(r)\right]$

How to incorporate quark confinement

 $\mathcal{S}_{\rm eff} = -N_c \operatorname{Trlog}\left[i\partial \!\!\!/ + i\hat{m} + iM(r)U^{\gamma_5}\right]$

 $M(r)U^{\gamma_5}(r) = S(r)\left[\cos P(r) + i\gamma_5\tau \cdot \mathbf{n}\sin P(r)\right]$

S(r) Confining background (mean) field P(r) Pion background (mean) field

How to incorporate quark confinement

 $\mathcal{S}_{\text{eff}} = -N_c \text{Trlog} \left[i \partial \!\!\!/ + i \hat{m} + i M(r) U^{\gamma_5} \right]$

 $M(r)U^{\gamma_5}(r) = S(r)\left[\cos P(r) + i\gamma_5\tau \cdot \mathbf{n}\sin P(r)\right]$

S(r) Confining background (mean) field P(r) Pion background (mean) field

The confining and pion fields are non-linearly coupled within hedgehog Ansatz.

Hedgehog symmetry and mean field

Collective (Zero-mode) quantisation

$$U_0 = \begin{bmatrix} e^{i\vec{n}\cdot\vec{\tau}\,P(r)} & 0\\ 0 & 1 \end{bmatrix} \, \operatorname{SU}(3)_{\mathrm{f}} \otimes \mathrm{O}(3)_{\mathrm{space}} \to \operatorname{SU}(2)_{\mathrm{iso+space}}$$

- Breaking of this higher symmetry will reduce the number of baryon states!
- We keep the zero-mode quantization for the moment.
- For excited states, meson loops should come into play.
 (beyond the zero modes. Future works)
- Vector and axial-vector, and tensor mean fields should be considered! (Future works)

Confining background field

Critical distance

$$\sigma R_c \approx M, \quad \lim_{r \to \infty} S(r) = M \qquad \sigma = (0.44 \text{ GeV})^2$$

We need to saturate S(r) to avoid a divergence

$$S(r) = \sigma r \ \theta(R_c - r) + \sigma R_c \ \theta(r - R_c)$$

This is plausible, since the string should be broken into creating mesons.

Self-consistent pion background field

Classical Nucleon mass

[MeV]	Valence	Sea	Total
ChQSM M = 420 MeV	589	707	1296
Rc = 0.4 fm	701	557	1258
Rc = 0.7 fm	269	916	1185
Rc = 1.0 fm	X	916	916

Ground baryons

$$K = J + T = 0, \ T_8 = \frac{N_c}{2\sqrt{3}}$$

Right hypercharge

 $Y' = \frac{N_c}{3}$

 Nc quark gives the baryon number in the XQSM.

Collective Hamiltonian for ground baryons

$$H = H_{\rm cl} + H_{\rm rot} + H_{\rm sb}$$

$$H_{\rm rot} = \frac{1}{2I_1} \sum_{i=1}^3 J_i^2 + \frac{1}{2I_2} \sum_{a=4}^7 J_a^2$$
$$H_{\rm sb} = \alpha D_{88}^{(8)}(R) + \beta Y + \frac{1}{\sqrt{3}} \gamma \sum_{i=1}^3 D_{8i}^{(8)} J_i$$

$$\alpha = -\left(\frac{2}{3}\frac{\Sigma_{\pi N}}{m_{\rm u} + m_{\rm d}} - \frac{K_2}{I_2}\right), \quad \beta = -\frac{K_2}{I_2}, \quad \gamma = 2\left(\frac{K_1}{I_1} - \frac{K_2}{I_2}\right)$$

Baryon wave functions

$$|B\rangle = \sqrt{\dim(\mathcal{R})}(-1)^{J_3 + Y'/2} D^{(\mathcal{R})*}_{(Y,T,T_3)(-Y',J,-J_3)}$$

Hyperon mass splitting to the first order of m_s

Hyperon mass splitting to the first order of m_s

Large σ -term \rightarrow

smaller strange quark mass

Excited valence quark

Schematic picture at large N_c

Excited valence quark for 8(J^P=1/2⁺)

$$K = J + T, K^{p} \neq 0$$

$$Y' = \frac{N_{c}}{3} = \frac{2}{\sqrt{3}}T_{8}$$

$$K^{p}=0^{+}$$

$$E=0$$

$$One-quark excitation from the valence level$$

$$H = H_{cl} + H_K + H_m$$
$$H_K = \frac{1}{2I_2} \sum_{a=4}^7 T_a^2 + \frac{(\mathbf{T} - a_K \mathbf{K})^2}{2I_1}$$

$$H_m = \alpha D_{88}^{(8)}(R) + \beta Y + \frac{1}{\sqrt{3}} \gamma \sum_{i=1}^3 D_{8i}^{(8)}(R) T_i + \frac{1}{\sqrt{3}} \delta_K \sum_{i=1}^3 D_{8i}^{(8)}(R) K_i$$
$$\delta_K = \frac{2m_s}{3} \left(d_K - \frac{K_1}{I_1} a_K \right)$$

wave functions for excited baryons

$$\Psi_K(R, S, \chi) = \sqrt{\frac{\dim(R)(2J+1)}{2K+1}} \sum_{TT_3J_3} C_{TT_3J_3}^{KK_3} D_{Y'T'T'_3, YTT_3}(R^{\dagger}) D_{J'_3J_3}(S^{\dagger}) \chi_{K_3}$$

$$H = H_{cl} + H_{K} + H_{m}$$

$$H_{K} = \frac{1}{2I_{2}} \sum_{a=4}^{7} T_{a}^{2} + \frac{(T - a_{K}K)^{2}}{2I_{1}}$$

$$T = K - J$$

$$H_m = \alpha D_{88}^{(8)}(R) + \beta Y + \frac{1}{\sqrt{3}} \gamma \sum_{i=1}^{\circ} D_{8i}^{(8)}(R) T_i + \frac{1}{\sqrt{3}} \delta_K \sum_{i=1}^{\circ} D_{8i}^{(8)}(R) K_i$$
$$\delta_K = \frac{2m_s}{3} \left(d_K - \frac{K_1}{I_1} a_K \right)$$

wave functions for excited baryons

$$\Psi_K(R, S, \chi) = \sqrt{\frac{\dim(R)(2J+1)}{2K+1}} \sum_{TT_3J_3} C_{TT_3J_3}^{KK_3} D_{Y'T'T_3', YTT_3}(R^{\dagger}) D_{J_3'J_3}(S^{\dagger}) \chi_{K_3}$$

$$H = H_{cl} + H_K + H_m$$

$$T = K - J$$

$$H_K = \frac{1}{2I_2} \sum_{a=4}^7 T_a^2 + \frac{(T - a_K K)^2}{2I_1}$$

$$H_m = \alpha D_{88}^{(8)}(R) + \beta Y + \frac{1}{\sqrt{2}} \gamma \sum_{a=4}^3 D_{8i}^{(8)}(R) T_i + \frac{1}{\sqrt{2}} \delta_K \sum_{a=4}^3 D_{8i}^{(8)}(R) K$$

$$H_{m} = \alpha D_{88}^{(6)}(R) + \beta Y + \frac{1}{\sqrt{3}} \gamma \sum_{i=1}^{r} D_{8i}^{(6)}(R) T_{i} + \frac{1}{\sqrt{3}} \delta_{K} \sum_{i=1}^{r} D_{8i}^{(6)}(R) K_{i}$$
$$\delta_{K} = \frac{2m_{s}}{3} \left(d_{K} - \frac{K_{1}}{I_{1}} a_{K} \right)$$

wave functions for excited baryons

$$\Psi_K(R, S, \chi) = \sqrt{\frac{\dim(R)(2J+1)}{2K+1}} \sum_{TT_3J_3} C_{TT_3J_3}^{KK_3} D_{Y'T'T_3', YTT_3}(R^{\dagger}) D_{J_3'J_3}(S^{\dagger}) \chi_{K_3}$$

Excited valence quark for 8(J^P=1/2⁺)

K=0+ \rightarrow **K=0+** : No contribution from χ_{K}

	Y	Mass	Candida tes	Status	l(JP)	Δ_{calc}	Δ _{exp}
Ν	1	1458	1440	****	1/2(1/2+)	100	220
٨	0	1648	1660	***	0(1/2+)	190	220
Σ	0	1750	1660	****	1(1/2+)	102	
Ξ	-1	1889	1690	*	1/2(? [?])	139	

Excited valence quark for 8(J^P=1/2⁺)

K=0+ \rightarrow **K=0+** : No contribution from χ_{K}

	Y	Mass	Candida tes	Status	I(J [₽])	Δ_{calc}	Δ_{exp}
Ν	1	1458	1440	****	1/2(1/2+)	190	220
٨	0	1648	1660	***	0(1/2+)	102	220
Σ	0	1750	1660	****	1(1/2+)	102	
Ξ	-1	1889	1690	*	1/2(? [?])	123	

Excited valence quark for 8(J^P=3/2⁺)

K=0+ \rightarrow **K=0+** : No contribution from χ_{K}

	Y	Mass	Candida tes	Status	l(J₽)	Δ_{calc}	Δ_{exp}
Δ	1	1826	1600	****	3/2(3/2+)		
Σ	0	1977	1660	*	1(3/2+)	151	
Ξ	-1	2128	1950	***	1/2(? [?])	151	
Ω	-2	2280	2250	***	0(??)	151	

Parameters for the baryons with negative parity

<u>ск, ак, and dк</u>

	ΔE(0+→1-) [MeV]	Ck	ак	dκ
ChQSM (M=420MeV)	240	0.377	0.217	0.213
Rc=0.42 fm	163	0.391	0.207	0.201
R _C =0.44 fm	249	0.398	0.202	0.198
R _C =0.46 fm	337	0.407	0.195	0.193
Diakonov <i>et</i> <i>al</i>	468		0.336	

Excited valence quark for 8(J^P=1/2⁻)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	I(JҎ)	Δ _{calc}	Δ _{exp}
Ν	1	1408	1535	****	1/2(1/2 ⁻)		
٨	0	1553	1670	****	0(1/2-)	145	135
Σ	0	1645				92	
Ξ	-1	1744	<u>?</u>	?	?	99	

Excited valence quark for 8(J^P=1/2⁻)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	l(JҎ)	Δ _{calc}	Δ _{exp}
Ν	1	1408	1535	****	1/2(1/2 ⁻)		
٨	0	1553	1670	****	0(1/2-)	145	135
Σ	0	1645				92	
Ξ	-1	1744	<u>?</u>	?	?	99	

Excited valence quark for 8(J^P=3/2⁻)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	l(JҎ)	Δ _{calc}	Δ _{exp}
Ν	1	1432	1520	****	1/2(3/2-)		
٨	0	1602	1690	****	0(3/2-)	170	170
Σ	0	1705	1670	****	1(3/2 ⁻)	103	-20
Ξ	-1	1824	1820	***	1/2(3/2-)	119	150

Excited valence quark for 8(J^P=3/2⁻)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	I(JP)	Δ_{calc}	Δ _{exp}
Ν	1	1432	1520	****	1/2(3/2 ⁻)		
٨	0	1602	1690	****	0(3/2-)	170	170
Σ	0	1705	1670	****	1(3/2 ⁻)	103	-20
Ξ	-1	1824	1820	***	1/2(3/2 ⁻)	119	150

Excited valence quark for 10(J^P=1/2⁻)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	I(J [₽])	Δ_{calc}	Δ _{exp}
Δ	1	1669	1620	****	3/2(1/2 ⁻)		
Σ*	0	1808	1750	***	1(1/2 ⁻)	139	130
Ξ*	-1	1947	<u>1900</u>	?	?	139	
Ω	-2	2085	<u>2050</u>	?	?	139	

Predictions by V. Petrov

Excited valence quark for 10(J^P=3/2⁻)

<u>K=0+ → K=1-</u>

	Y	Mass[M eV]	Candida tes	Status	I(J₽)	Δ_{calc}	Δ _{exp}
Δ	1	1726	1700	****	3/2(3/2-)		
Σ*	0	1862	<u>1850</u>	?	?	136	
Ξ*	-1	1999	<u>2000</u>	?	?	136	
Ω	-2	2135	<u>2150</u>	?	?	136	

Predictions by V. Petrov

What is missing in this approach?

Meson-loop corrections (1/Nc): So far, the approach is just like a mean-field approach. We need to do more: RPA-like meson-loop contributions.

qqbar excitations more than pions: vector, Axial-vector, and tensor mean fields and meson loops for higher-lying excited states

Summary and Outlook

Summary & Outlook

•We constructed the extended chiral quark-soliton model, deriving the pion mean field self-consistently in the presence of the confining field.

•The mass ordering problems are not solved but the mass differences are better than the other quark models.

•Meson-loop corrections (RPA-like contributions) to the excited baryons

•Contribution of the vector, axial-vector, and tensor mean fields to the excited baryons

- •Radiative and strong decays of the excited baryons
- Transition form factors of the excited baryons

Summary & Outlook

- Application to Heavy baryon systems (We already did recently.)
- Model-independent analysis
- (We can describe the correct mass ordering.)
- •Long way to go for a complete generalization of the chiral quarksoliton model.

Though this be madness, yet there is method in it.

Hamlet Act 2, Scene 2

Thank you very much!

Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_c(3000)^0$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300 \pm 100 \pm 80$	20.4
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1 ^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970\pm60\pm20$	20.4
		$< 1.2\mathrm{MeV}, 95\%~\mathrm{CL}$		
$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_c(3090)^0$	$3090.2\pm0.3\pm0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480 \pm 70 \pm 30$	10.4
		$<2.6\mathrm{MeV},95\%$ CL		
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$	$1670 \pm 450 \pm 360$	
$\Omega_c(3066)^0_{\rm fd}$			$700 \pm 40 \pm 140$	
$\Omega_c(3090)^0_{\mathrm{fd}}$			$220\pm60\pm90$	
$\Omega_c(3119)^0_{\rm fd}$			$190 \pm 70 \pm 20$	

Anti-15plet

Exotic anti-15plet naturally arises from the XQSM.

Anti-15plet

Mass splitting due to the mean fields

$$\mathcal{M}_{\overline{15},J=0} = M_{\text{sol}} + \frac{5}{2} \frac{1}{\rho I_2},$$
$$\mathcal{M}_{\overline{15},J=1} = M_{\text{sol}} + \frac{3}{2} \frac{1}{\rho I_2} + \frac{1}{\rho I_1}$$

Mass splitting is positive!

$$\Delta_{\overline{\mathbf{15}}} = \mathcal{M}_{\overline{\mathbf{15}},J=0} - \mathcal{M}_{\overline{\mathbf{15}},J=1} = \frac{1}{\rho} \left(\frac{1}{I_2} - \frac{1}{I_1} \right) > 0!$$

HChK, M.V. Polyakov, M. Praszalowicz arXiv:1704.04082

Anti-15plet

SU(3) symmetry-breaking splitting

$$\Delta_s M_{\overline{15}} = Y \left(\beta + \frac{17}{144} (\alpha - 2\gamma) \right) + \left(-\frac{2}{27} + \frac{1}{24} (T(T+1) - \frac{1}{4}Y^2) \right) (\alpha - 2\gamma).$$

HChK, M.V. Polyakov, M. Praszalowicz arXiv:1704.04082

Excited anti-3plet and 6plet

K = 1 $\mathcal{M}'_{\overline{\mathbf{3}}} = M'_{\text{sol}} + \frac{1}{2I_2} + \frac{1}{I_1}(1 - a_1^2).$ $\mathcal{M}_{6J}' = \mathcal{M}_{\overline{3}}' + \frac{1 - a_1}{I_1} + \frac{a_1}{I_1} \times \begin{cases} -1 & \text{for } J = 0\\ 0 & \text{for } J = 1\\ 2 & \text{for } J = 2 \end{cases}$ $\delta_{\overline{\mathbf{3}}}' = \frac{\mathbf{3}}{\mathbf{8}}\bar{\alpha} + \beta = \delta_{\overline{\mathbf{3}}}$ $\delta'_{6\,J} = \delta_{6} - \frac{3}{20}\delta \times \begin{cases} 2 & \text{for} \quad J = 0\\ 1 & \text{for} \quad J = 1\\ -1 & \text{for} \quad J = 2 \end{cases}$

HChK, M.V. Polyakov, M. Praszalowicz arXiv: 1704.04082

Hyperfine splittings

$$\Delta_{\overline{\mathbf{3}}}^{\mathrm{hf}} = \Delta_{\mathbf{6}J=1}^{\mathrm{hf}} = \frac{\kappa'}{m_c}, \quad \Delta_{\mathbf{6}J=2}^{\mathrm{hf}} = \frac{5}{3} \frac{\kappa'}{m_c}$$

Candidates for excited anti-3plet

 $\Lambda_c(2592), \quad \Xi_c(2790) \text{ for } J^p = 1/2^ \Lambda_c(2628), \quad \Xi_c(2818) \quad \text{for } J^P = 3/2^-$

Determine the parameters

$$\frac{\kappa'}{m_c} = \frac{1}{3} (M_{\Lambda_c(2628)} + 2M_{\Xi_c(2818)}) - \frac{1}{3} (M_{\Lambda_c(2252)} + 2M_{\Xi_c(2790)}) = 30 \text{ MeV},$$
$$\mathcal{M}'_{\mathbf{3}} = \frac{2}{9} (M_{\Lambda_c(2628)} + 2M_{\Xi_c(2818)}) + \frac{1}{9} (M_{\Lambda_c(2252)} + 2M_{\Xi_c(2790)}) = 2744 \text{ MeV}$$

HChK, M.V. Polyakov, M. Praszalowicz arXiv:1704.04082

Hyperfine splittings

HChK, M.V. Polyakov, M. Praszalowicz arXiv:1704.04082

Scenario I

Assertion: Five Omega_cs belong to excited sextets.

J	S^P	$M [{ m MeV}]$	$\kappa'/m_c \; [{ m MeV}]$	$\Delta_J [{ m MeV}]$
0	$\frac{1}{2}^{-}$	3000		
1	$\frac{1}{2}^{-}$	3050	16	61
	$\frac{3}{2}^{-}$	3066	10	01
2	$\frac{3}{2}^{-}$	3090	17	47
	$\frac{5}{2}^{-}$	3119		

$$\frac{\kappa'}{m} = 30 \,\mathrm{MeV}$$

 m_c

The HF splittings are very much deviated from what we have determined from the anti-3plet.

Scenario II

Assertion: Thee Omega_cs belong to excited sextets, whereas two Omega_cs with smaller widths belongs to the anti-15plet.

J	S^P	$M [{ m MeV}]$	$\kappa'/m_c \; [{ m MeV}]$	$\Delta_J [{ m MeV}]$
0	$\frac{1}{2}^{-}$	3000		_
1	$\frac{1}{2}^{-}$	3066	94	80
	$\frac{3}{2}^{-}$	3090	24	02
2	$\frac{3}{2}^{-}$	3222	input	input
	$\frac{5}{2}^{-}$	3262	24	164

 $\frac{\kappa}{m_c} \approx 70 \,\mathrm{MeV}$ Excellent agreement with the ground-state value!

HChK, M.V. Polyakov, M. Praszalowicz arXiv: 1704.04082

Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_c(3000)^0$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300 \pm 100 \pm 80$	20.4
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1 ^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970\pm60\pm20$	20.4
		$< 1.2\mathrm{MeV}, 95\%~\mathrm{CL}$		
$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_c(3090)^0$	$3090.2\pm0.3\pm0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
		$<2.6{\rm MeV},95\%$ CL		
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$	$1670 \pm 450 \pm 360$	
$\Omega_c(3066)^0_{\rm fd}$			$700 \pm 40 \pm 140$	
$\Omega_c(3090)^0_{\mathrm{fd}}$			$220\pm60\pm90$	
$\Omega_c(3119)^0_{\rm fd}$			$190 \pm 70 \pm 20$	

$\Omega_c(3050)$ and $\Omega_c(3119)$ as a exotic anti-15plet

Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5 \pm 0.6 \pm 0.3$	$1300 \pm 100 \pm 80$	20.4
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1 ^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970\pm~60\pm~20$	20.4
Deservanue:Deses	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$< 1.2\mathrm{MeV}, 95\%$ CL		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480 \pm 70 \pm 30$	10.4
		$< 2.6 \mathrm{MeV}, 95\%$ CL		
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$	$1670 \pm 450 \pm 360$	
$\Omega_c(3066)^0_{\rm fd}$			$700 \pm 40 \pm 140$	
$\Omega_c(3090)^0_{\mathrm{fd}}$			$220\pm60\pm90$	
$\Omega_c(3119)^0_{\rm fd}$			$190\pm70\pm20$	

Bc baryons will decay weakly. So, they should be stable!