New deeply γ and π^0 electroproduction results from Hall A at JLab

Carlos Muñoz Camacho

IPN-Orsay, CNRS/IN2P3 (France)

Nucleon and Resonance Structure with Hard Exclusive Processes May 29–31, 2017

Outline

- Very brief experimental introduction to DVCS
- Provide the second s
 - DVCS: beam energy dependence of the cross section (arxiv:1703.09442)
 - π^{0} : off the neutron \rightarrow flavor separation (arXiv:1702.00835)
- Outlook
 - Jefferson Lab at 12 GeV: Hall A \rightarrow C programs

Introduction

Motivation

Deeply Virtual Compton Scattering (DVCS): $\gamma^* p \rightarrow \gamma p$

Bjorken limit:

$$egin{array}{ccc} Q^2 = & -q^2
ightarrow & \infty \ &
u
ightarrow & \infty \end{array}
ight\} \quad x_B = rac{Q^2}{2M
u} ext{ fixed}$$

GPDs accesible through DVCS *only* at Q² → ∞
Actual value of Q² *must* be tested and established by experiment

Introduction

Experiment

DVCS experimentally: interference with Bethe-Heitler

At leading twist:

$$d^{5} \overrightarrow{\sigma} - d^{5} \overleftarrow{\sigma} = 2 \Im m \left(T^{BH} \cdot T^{DVCS} \right)$$

$$d^{5} \overrightarrow{\sigma} + d^{5} \overleftarrow{\sigma} = |BH|^{2} + 2 \Re e \left(T^{BH} \cdot T^{DVCS} \right) + |DVCS|^{2}$$

$$\mathcal{T}^{DVCS} = \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi+i\epsilon} + \dots =$$

$$\mathcal{P} \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi} - i\pi \ H(x=\xi,\xi,t) + \dots$$
In helicity-independent cross section

Access i

Experiment

Leading twist GPDs

8 GPDs related to the different combination of quark/nucleon helicities

4 chiral-even GPDs: conserve the helicity of the quark

Access through DVCS (and DVMP)

Experiment

Leading twist GPDs

8 GPDs related to the different combination of quark/nucleon helicities

DVCS cross sections: Q^2 -dependance

No Q^2 -dependance within limited range \Rightarrow leading twist dominance

Phys. Rev. C92 (2015) 055202

Carlos Muñoz Camacho (IPN-Orsay)

DVCS cross sections: higher twist corrections

 KM10a: global fit to HERA x-sec & HERMES + CLAS spin asymmetries Kumericki and Mueller (2010)

DVCS cross sections: higher twist corrections

KM10a: global fit to HERA x-sec & HERMES + CLAS spin asymmetries

Kumericki and Mueller (2010)

• Target-mass corrections (TMC): $\sim O(M^2/Q^2)$ and $\sim O(t/Q^2)$

Braun, Manashov, Mueller and Pirnay (2014)

Carlos Muñoz Camacho (IPN-Orsay)

New DVCS and π^0 results from Hall A

IPNO'2017 8 / 19

DVCS process: leading twist ambiguity

- DVCS defines a preferred axis: light-cone axis
- At finite Q^2 and non-zero *t*, there is an ambiguity:
 - Belitsky et al. ("BMK", 2002–2010): light-cone axis in plane (q,P)
 - Share the all ("BMP", 2014): light-cone axis in plane (q,q')easier to account for kin. corrections $\sim O(M^2/Q^2)$, $\sim O(t/Q^2)$

$$\begin{aligned} \mathcal{F}_{++} &= & \mathbb{F}_{++} + \frac{\chi}{2} \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right] - \chi_0 \mathbb{F}_{0+} \\ \mathcal{F}_{-+} &= & \mathbb{F}_{-+} + \frac{\chi}{2} \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right] - \chi_0 \mathbb{F}_{0+} \\ \mathcal{F}_{0+} &= & -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right] \end{aligned} \right\} \xrightarrow{\mathbb{F}_{-+} = 0} \begin{cases} & \mathcal{F}_{++} &= (1+\frac{\chi}{2}) \mathbb{F}_{++} \\ & \mathcal{F}_{-+} &= \frac{\chi}{2} \mathbb{F}_{++} \\ & \mathcal{F}_{0+} &= \chi_0 \mathbb{F}_{++} \end{cases} \end{aligned}$$

(eg. $\chi_0 = 0.25$, $\chi = 0.06$ for $Q^2 = 2 \text{ GeV}^2$, $x_B = 0.36$, $t = -0.24 \text{ GeV}^2$)

Rosenbluth-like separation of the DVCS cross section

$$\sigma(ep \to ep\gamma) = \underbrace{|BH|^2}_{\text{Known to} \sim 1\%} + \underbrace{\mathcal{I}(BH \cdot DVCS)}_{\text{Linear combination of GPDs}} + \underbrace{|DVCS|^2}_{\text{Bilinear combination of GPDs}}$$

$$\mathcal{I} \propto 1/y^3 = (k/\nu)^3,$$

$$|\mathcal{T}^{DVCS}|^2 \propto 1/y^2 = (k/\nu)^2$$

BMK-2010 – at leading twist \rightarrow 7 independent GPD terms: { $\Re e, \Im m \left[\mathcal{C}^{\mathcal{I}}, \mathcal{C}^{\mathcal{I}, V}, \mathcal{C}^{\mathcal{I}, A} \right] (\mathcal{F})$ }, and $\mathcal{C}^{DVCS}(\mathcal{F}, \mathcal{F}*)$.

 φ -dependence provides 5 independent observables:

$$\sim$$
1, $\sim \cos arphi, \sim \sin arphi, \sim \cos(2arphi), \sim \sin(2arphi)$

The measurement of the cross section at two or more beam energies for exactly the same Q^2 , x_B , t kinematics, provides the additional information in order to extract all leading twist observables independently.

Carlos Muñoz Camacho (IPN-Orsay) New DVCS and π^0 results from Hall A

E07-007: DVCS beam-energy dependence

• Cross section measured at 2 beam energies and constant Q^2 , x_B , t

• Leading-twist and LO simultaneous fit of both beam energies (dashed line) does not reproduce the data

Light-cone axis in the (q,q') plane (Braun *et al.*): \mathbb{H}_{++} , \mathbb{H}_{++} , \mathbb{E}_{++} , \mathbb{E}_{++}

Beyond Leading Order (LO) and Leading Twist (LT)

Two fit-scenarios:

Light-cone axis in the (q,q') plane (Braun *et al.*)

 $\begin{array}{l} \mathsf{LO/LT} + \mathsf{HT} \\ \mathbb{H}_{++}, \, \widetilde{\mathbb{H}}_{++}, \, \mathbb{H}_{0+}, \, \widetilde{\mathbb{H}}_{0+} \end{array}$

 $\begin{array}{l} \mathsf{LO/LT} + \mathsf{NLO} \\ \mathbb{H}_{++}, \, \widetilde{\mathbb{H}}_{++}, \, \mathbb{H}_{-+}, \, \widetilde{\mathbb{H}}_{-+} \end{array}$

E07-007: DVCS beam-energy dependence

• Cross section measured at 2 beam energies and constant Q², x_B, t

- Leading-twist and LO simultaneous fit of both beam energies (dashed line) does not reproduce the data
- Including either NLO or higher-twist effects (dark solid line) satisfactorily reproduce the angular dependence

Carlos Muñoz Camacho (IPN-Orsay) New DVCS and π^0 results from Hall A

DVCS² and \mathcal{I} (DVCS·BH) separation

DVCS² and \mathcal{I} (DVCS·BH) separated in NLO and higher-twist scenarios

E08-025: DVCS and π^0 off quasi-free neutrons

- LD₂ as a target
- Quasi-free p evts subtracted using the (normalized) data from E07-007
- Concurrent running: switching LH2/LD2 \rightarrow minimize uncertainties

The average momentum transfer to the target is much larger than the *np* relative momentum, justifying this **impulse approximation**

Carlos Muñoz Camacho (IPN-Orsay)

New DVCS and π^0 results from Hall A

E08-025 Results

π^0 electroproduction cross section off the neutron

- Cross section off coherent d found negligeable within uncertainties
- Very low E_{beam} dependence of the n cross section \rightarrow dominance of σ_T

E = 5.55 GeV

Carlos Muñoz Camacho (IPN-Orsay)

 $= \frac{d\sigma_L}{dt} (\mu b/GeV^2)$

0

E08-025 Results

Separated π^0 cross section off the neutron

Carlos Muñoz Camacho (IPN-Orsav)

New DVCS and π^0 results from Hall A

IPNO'2017 17/19 JLab @ 12 GeV

11 (and 8.8 and 6.6) GeV program in Halls A & C

- Approved high precision DVCS & π^0 programs in Halls A & C

Summary

- Recent high precision DVCS cross sections from Hall A at JLab
- Need of higher twist and/or NLO contributions to fully describe the data (eg. in global GPD fits)
- First separation of DVCS² and BH-DVCS interference in the $ep \rightarrow e\gamma p$ cross section
- L/T separation of π⁰ electroproduction cross section off neutron: dominance of σ_T measured
- Flavor separation of transversity GPD convolutions within the modified factorization approach
- Approved program of experiments in Hall A and C to continue these high precision DVCS measurements at 12 GeV

 π^0 electroproduction

π^0 electroproduction ($ep \rightarrow ep\pi^0$)

At leading twist:

$$\frac{d\sigma_L}{dt} = \frac{1}{2}\Gamma \sum_{h_N,h_{N'}} |\mathcal{M}^L(\lambda_M = 0, h'_N, h_N)|^2 \propto \frac{1}{Q^6} \qquad \sigma_T \propto \frac{1}{Q^8}$$
$$\mathcal{M}^L \propto \left[\int_0^1 dz \frac{\phi_\pi(z)}{z}\right] \int_{-1}^1 dx \left[\frac{1}{x-\xi} + \frac{1}{x+\xi}\right] \times \left\{\Gamma_1 \widetilde{H}_{\pi^0} + \Gamma_2 \widetilde{E}_{\pi^0}\right\}$$

Different quark weights: flavor separation of GPDs

$$|\pi^{0}\rangle = \frac{1}{\sqrt{2}} \{ |u\bar{u}\rangle - |d\bar{d}\rangle \} \qquad \qquad \widetilde{H}_{\pi^{0}} = \frac{1}{\sqrt{2}} \left\{ \frac{2}{3} \widetilde{H}^{u} + \frac{1}{3} \widetilde{H}^{d} \right\}$$
$$|p\rangle = |uud\rangle \qquad \qquad \qquad H_{DVCS} = \frac{4}{9} H^{u} + \frac{1}{9} H^{d}$$

.

Carlos Muñoz Camacho (IPN-Orsay)

New DVCS and π^0 results from Hall A

 π^0 electroproduction

Exclusive π^0 electroproduction cross-sections – Hall A

- $\sigma_T + \epsilon_L \sigma_L \sim Q^{-5}$ (similar to $\sigma_T (ep \to ep \pi^+)$ measured in Hall C)
- GPDs predict $\sigma_L \sim Q^{-6}$
- σ_T likely to dominate at these Q², but L/T separation necessary (→ new experiment...)

E. Fuchey et al., Phys. Rev. C83 (2011), 025125

 π^0 electroproduction

Exclusive π^0 electroproduction cross-sections – Hall B

• $\sigma_T + \epsilon \sigma_L$ • σ_{TL} • σ_{TT}

- Very large cross section compared to leading chiral even GPD models
- Fair agreement w/ models of trans. photon (modified) factorization (& transversity GPDs)

Rosenbluth separation

$$\frac{d^4\sigma}{dQ^2 dx_B dt d\phi} = \frac{1}{2\pi} \Gamma(Q^2, x_B, E) \Big[\frac{d\sigma_T}{dt} + \frac{\epsilon}{dt} \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{TL}}{dt} \cos \phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi \Big]$$

 π^0 electroproduction

π^0 separated response functions

π^0 L/T separated cross section

- Cross section largely dominated by transverse component
 - \rightarrow far from asymptotic prediction of QCD
- Fair agreement with models using modified factorization approach
 - \rightarrow potential access to transversity GPDs
- Indications of small longitudinal response through non-zero σ_{LT}

 π^0 electroproduction

COMPASS

Exclusive π^0 cross section from COMPASS 2012 run

Results also in fair agreement with transversity GPD models

JLab @ 12 GeV

Kinematic settings: testing Q^2 -dependance

Kin	Q^2	x_B	θ_e	θ_{γ^*}	P_e
	(GeV^2)		(deg.)	(deg.)	(GeV)
1	1.5	0.36	15.6	22.3	3.6
2	1.9	0.36	19.3	18.3	2.9
3	2.3	0.36	23.9	14.8	2.3

Experiment

Data analysis: exclusivity and background subtraction

Carlos Muñoz Camacho (IPN-Orsay)

New DVCS and π^0 results from Hall A