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• Introduction

hard-exclusive reactions → GPDs(x, ξ, t)

→֒ tomography, Ji sum rule
︸ ︷︷ ︸

ξ=0

+ more than that
︸ ︷︷ ︸

ξ 6=0

• Energy-momentum tensor & D-term

last unknown global property(!)

stress tensor, strong forces, stability

• Applications

pictorial : insights in strong forces

principle: test correctness of models & effective approaches

practical: hard-exclusive reactions at JLab → cc̄ pentaquark spectroscopy at LHCb

• Outlook



Introduction

• hard-exclusive reactions

factorization, access to GPDs

Ji; Radyushkin; Collins, Frankfurt, Strikman
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• one day: we will know the GPDs.

• what will we learn?

definitions for completeness:
ξ = (n ·∆)/(n · P ), t = ∆2

P = 1
2
(p′ + p), ∆ = p′ − p

n2 = 0, n · P = 2, k = xP
renormalization scale µ
analog gluon GPDs



Will learn a lot!

• GPDs generalize

form factors, PDFs
∫
dx Hq(x, ξ, t) = F q

1(t)

lim
∆→0

Hq(x, ξ, t) = f q1(x)
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γ *
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k = x P k = x P

PDF(x)

• use impact parameter space

→ tomography (Ralston, Pire, Burkardt)

Hq(x, b⊥) =

∫
d2∆⊥
(2π)2

[

lim
ξ→0

Hq(x, ξ, t)

]

ei∆TbT

 

N(P)

k = xP

b⊥

• polynomiality → access to

gravitational form factors
∫
dx xHq(x, ξ, t) = Aq(t)+ ξ2Dq(t)
∫
dx xEq(x, ξ, t) = Bq(t)− ξ2Dq(t)
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graviton*

Tµν

• and gravity couples to

energy momentum tensor

probably most fundamental quantity



Energy-momentum tensor (EMT)

• important: do you know introductory QFT text books

which do not discuss EMT in first chapters?∗

• generators of Poincaré group → matrix elements → mass
︸ ︷︷ ︸

!

, spin
︸ ︷︷ ︸

!

, D-term
︸ ︷︷ ︸

!?(in introductory books: free fields, solvable, instructive)

• even if not solvable, studies of EMT insightful

prominent example: Ji sum rule PRL 78 (1997) 610
∫

dxx

(

Hq(x, ξ, t) + Eq(x, ξ, t)

)

= Aq(t) +Bq(t)
t→0−→ 2Jq(0)

notice: ξ-dependence
not explored, D-term is

“first” if ξ 6= 0 considered:∫
dxxH(x, ξ, t) = A(t) + ξ2D(t)

∗ interestingly, advanced QFT books discuss EMT in later chapters: trace anomaly

T̂ µ
µ ≡ β

2g
F µνFµν + (1+ γm)

∑

qmqψ̄qψq Adler, Collins, Duncan, PRD15 (1977) 1712;

Nielsen, NPB 120, 212 (1977); Collins, Duncan, Joglekar, PRD 16, 438 (1977)



definition of nucleon EMT form factors

〈P ′|T̂µν
q,g

|P 〉 = ū(p′)



 Aq,g(t)
γµPν + γνPµ

2

+ Bq,g(t)
i(Pµσνρ+ Pνσµρ)∆ρ

4MN

+ Dq,g(t)
∆µ∆ν − gµν∆2

4MN
± c̄(t)gµν



u(p)

• T̂ qµν and T̂ gµν each gauge-invariant (not conserved)

• total EMT T̂µν = T̂ qµν + T̂ gµν is conserved: ∂µT̂ µν = 0

• constraints: mass ⇔ Aq(0)+Ag(0) = 1 (100% of nucleon momentum carried by quarks + gluons)

spin ⇔ Bq(0) +Bg(0) = 0 (i.e. Jq + Jg = 1
2
nucleon spin due to quarks + gluons)∗

• property: D-term ⇔ Dq(0) +Dg(0) ≡ D → fundamental quantity!

but unconstrained!

Unknown!

∗ also expressed as: vanishing of

total gravitomagnetic moment

notation: Aq(t) =M q
2(t), Aq(t) + Bq(t) = 2 Jq(t), Dq(t) = 4

5
dq1(t) = 1

4
Cq(t) or Cq(t)



Last global unknown: How do we learn about nucleon?

|N〉 = strong interaction particle. Use other forces to probe it!

em: ∂µJ
µ
em = 0 〈N ′|Jµem|N〉 −→ Q, µ, . . .

weak: PCAC 〈N ′|Jµweak|N〉 −→ gA, gp, . . .

gravity: ∂µT
µν
grav = 0 〈N ′|T µνgrav|N〉 −→ M , J, D, . . .

basic global properties: Qprot = 1.602176487(40)× 10−19C
µprot = 2.792847356(23)µN
gA = 1.2694(28)
gp = 8.06(0.55)
M = 938.272013(23)MeV

J = 1
2

D = ?
and more: t-dependence . . . . . .
parton structure, etc . . .

→֒ D = “last” global unknown

which value does it have?

what does it mean?



EMT form factors & D-term of nucleon:

• nature: unknown!

• model: e.g. chiral quark soliton model, Goeke et al, PRD75 (2007) 094021
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well-tested model, many nucleon properties vs data within 30%
√

• lattice: QCDSF Collaboration, Göckeler et al, PRL92 (2004) 042002 & hep-ph/0312104 → test models
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lattice QCD, bag model, Skyrme model,
chiral quark soliton model: Dnucleon < 0

other particles:
nuclei, pions, photons, Q-balls, Q-cloud, Higgs(!)
have also negative D-terms! (in theory!)

One day we will know D(t) from experiment!

what will we learn?



interpretation of Fourier transforms of form factors as 3D-densities

• Breit frame ∆µ = (0, ~∆) and t = − ~∆2

• analog to electric form factor GE(~∆
2) =

∫

d3~r ρE(~r ) e
i ~∆~r → charge distribution

Sachs, PR126 (1962) 2256

→֒ Q =

∫

d3~r ρE(~r )

• static EMT Tµν(~r, ~s ) =

∫
d3 ~∆

2E(2π)3
ei
~∆~r 〈P ′|T̂µν|P 〉 → mechanical properties of nucleon

M.V.Polyakov, PLB 555 (2003) 57

→֒ MN =

∫

d3~r T00(~r )

limitations of 3D densities (∃ in contrast to 2D ↔ tomography)

well known since earliest days (Sachs, 1962)
comprehensive studies, e.g. by
• Belitsky & Radyushkin, Phys. Rept. 418, 1 (2005), Sec. 2.2.2
• X.-D. Ji, PLB254 (1991) 456 (Skyrme model, not dramatic)
• G. Miller, PRC80 (2009) 045210 (toy model, dramatic)

No doubt: mathematical operation is well-defined
The question: is the concept justified? Answer:
yes of course, modulo corrections!
how large are these corrections?



are corrections large? Look at simplest framework

L = 1
2
(∂µΦ)(∂µΦ)− 1

2
m2Φ2 free neutral elementary point-like scalar particle

(“Higgs” modulo standard model corrections)

evaluate EMT:

〈~p ′ |T̂ µν(x)|~p 〉 = ei(p
′−p)x 1

2

{

P µP ν A(t) +

(

∆µ∆ν − gµν∆2

)

D(t)

}

, A(t) = −D(t) = 1

compute energy density

T00(~r ) ≡ m2

∫
d3∆

E(2π)3
ei
~∆~r

[

A(t)−
t

4m2
(A(t) +D(t))

]

in Breit frame E = E′ =
√

m2 + ( ~∆/2)2

here
=

m
√

1− ~∇2/(4m2)

δ(3)(~r )

reproduces correctly
∫
d3r T00(~r )

!
= m

but yields 〈r2E〉 =
1
m

∫
d3r r2T00(~r )

??
= 3

4m2

mean square radius 6= 0 for point-like particle???
effect of relativistic “recoil” corrections
bad concept for point-like particle

However . . .



• take heavy mass limit to recover “correct” description

T00(~r ) −→ m δ(3)(~r ) for m→ large . . . large with respect to what?

• let’s give particle a finite size R (i.e. “smear out” δ-function, such that reduces to δ(3)(~r ) for R → 0)

T00(~r )true
e.g.
= m

e−r
2/R2

π3/2R3
“true energy density”

→ 〈r2E〉 = 〈r2E〉true
(

1+ δcorr

)

≃ 〈r2E〉true with δcorr ≡
1

2m2R2
≪ 1 〈r2E〉true = 3

2
R2 for Gaussian

• nuclei (mA ≃ mNA, RA = R0A1/3, R0 ∼ 1.3 fm) → δcorr ∼ 0.16A−8/3 . 4× 10−3
(4He, . . . )

• for nucleon (mp ∼ 938MeV, Rp ∼ 0.875 fm) → δcorr ∼ 0.03
!?
≪ 1 small enough!?

• large-Nc nucleon (mN ∼ Nc, RN ∼ N0
c ) → δcorr ∼

1

N2
c

!!
≪ 1 small!! Why?

remark:
1

Nc

is the only available (known) small parameter in QCD at all energies

(large-N powerful theoretical method, much more general than QCD)



• interpretation as 3D-densities (M.V.Polyakov, PLB 555 (2003) 57)

Breit frame with ∆µ = (0, ~∆): static EMT Tµν(~r, ~s ) =

∫
d3 ~∆

2E(2π)3
ei
~∆~r 〈P ′|T̂µν|P 〉

interpretation in terms of 3D-densities subject to corrections, BUT all formulae correct!

∫

d3r T00(~r ) =MN known

∫

d3r εijk si rj T0k(~r ) =
1

2
known

−
5MN

8

∫

d3r

(

rirj −
r2

3
δij
)

Tij(~r ) ≡D new!

with: Tij(~r ) = s(r)
(
rirj

r2
− 1

3
δij

)

+ p(r) δij stress tensor

s(r) related to distribution of shear forces

p(r) distribution of pressure inside hadron

}

−→ “mechanical properties”



• relation to stability: EMT conservation ⇔ ∂µT̂µν = 0 ⇔ ∇iTij(~r ) = 0

→֒ necessary condition for stability

∞∫

0

dr r2 p(r) = 0 (von Laue, 1911)

D = −
16π

15
MN

∞∫

0

dr r4s(r) = 4πMN

∞∫

0

dr r4 p(r) →֒ shows how internal forces balance

• lessons from model
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+

energy density pressure: r2p(r) r4p(r)  sign of d1 negative

T00(0) = 1.70GeV/fm3 ≈ 3× 1015 ρ(H2O) ≈ 13× (nuclear density)

p(0) = 0.23GeV/fm3 ≈ 4× 1034N/m2 & 100×(pressure in center of neutron star)
in chiral quark soliton model (Goeke et al, PRD75 (2007) 094021)

. . . how does it look like in QCD? Would be fascinating to know!



• intuition on shear forces and pressure

s(r)

 

-2

-1

 0

 1

 2

 3

 0  1  

  p(r) & s(r)  in units of p0

r in R0 		

liquid drop

p(r)
s(r)

liquid drop

radius R0

inside pressure p0
surface tension γ = 1

2
p0R0

s(r) = γ δ(r −R0)

p(r) = p0Θ(R0 − r)− 1
3
p0R0 δ(r −R0)

application: liquid drop model of nucleus
(M.V.Polyakov, PLB 555 (2003) 57)

realized in field theoretical Q-ball system
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L = 1
2
(∂µΦ∗)(∂µΦ)− V with U(1) global symm., V = A (Φ∗Φ)−B (Φ∗Φ)2 +C (Φ∗Φ)3, Φ(t, ~r ) = eiωt φ(r)

S. R. Coleman, NPB262 (1985) 263, 269 (1986) 744E; M. Mai, PS PRD86 (2012) 076001

to satisfy
∞∫

0

dr r2p(r) = 0 → p(r) must have a zero! Could it have more zeros?



N th radial excitations of Q-balls
N = 0 ground state,
N = 1 first excited state, etc

Mai, PS PRD86 (2012) 096002
charge density exhibits N shells
p(r) exhibits (2N +1) zeros
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N > 0 radial excitations all unstable
→ decay to ground state Q-balls of smaller total energy and same total charge

nevertheless
∞∫

0

dr r2p(r) = 0 always valid

→ necessary (not sufficient) condition ⇔ (local vs global minimum of action)

D-term always negative!
→ is it a theorem? → for Q-balls yes Mai, PS PRD86 (2012) 076001
→ rigorous proof that d1 < 0 for hadrons in QCD and other particles still awaiting

so far all D-terms negative: pions, nucleons, nuclei, nucleons in nuclear matter, photons, Q-balls, Q-clouds∗

(Q-cloud: most extreme instability(!); parametric limit where Q-balls dissociate in free quanta; still D < 0)



Application I: investigating forces

prominent property of proton:
life time τprot > 2.1× 1029 years!

question: how do strong forces
balance to produce stability?

• answer in model: strong cancellation of
repulsive forces due to quark core, and
attractive forces from pion cloud
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in chiral quark soliton model
chiral symmtry breaking

√
realization of QCD in large-Nc

√
built on instanton vacuum calculus

√
not bad, but after all a model . . .
Goeke et al, PRD75 (2007)

• answer in QCD: we do not know
nice pictures, attractive insights
underexplored propaganda(?)

be aware: same for neutron,

τneut = 14min 40 sec ≫ 10−23 sec

and even the same picture for ∆ . . .

τ∆ ∼ 10−23 sec → necessary condition!

• as motivation for GPD program: okay

. . . but is there any practical use of that?

answer: in principle yes!



Application II: test models or effective theories

Whether you like 3D densities or not:

• you can evaluate EMT form factor: D(t)

• take Fourier transform → p(r)
(do not call it pressure, if you do not like it)

• check that

∞∫

0
dr r2p(r) = 0 (must be due to ∂µT µν = 0)

if true: consistent model, nucleon exists
(e.g. chiral quark soliton model, bag model, Skyrme model LO, . . . )

if not: something is screwed up, no nucleon exists
(e.g. Bogolyubov model, spectator model, Skyrme model NLO, . . . )

• depending on answer use model (with due care)
or improve/repair (if you know how)
or discard
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Tbag

µν
 = g

µν
B

Bogoliubov

p(r)Dirac

bag model

p(r)bag

∼∼
Bogoliubov model (1967)

Thomas & Weise,

“Structure of Nucleon,”

Sec. 8.4.1

Bogoliubov: MN =
3ω0
Rbag

where Rbag fixed by hand

bag model: MN =
3ω0
Rbag

+
4π

3
R3
bagB → Rbag from δMN = 0 ⇔

Rbag∫

0

dr r2p(r) = 0

try to minimize MN in Bogoliubov model ⇒ Rbag → ∞ due to p(r)Dirac > 0 Explosion!!

Notice that DBogo positive! But unphysical system. Model discarded!

(has done its job, paved the way for bag model)

Why bag model in 21 century? Because still insightful!

And enthusiastic undergraduate students can handle it!



Application III: amazing!

1 10 102 103 104  

Jlab Compass LHC

s1/2 [GeV]

GPD -cc
u

   u

d

from hard-exclusive reactions at JLab, COMPASS . . .

. . . to spectroscopy of c̄c-pentaquarks at LHCb

not usual hadrons, not just any exotic hadron

only c̄c-baryon bound states → rich enough!



• discovery of charmonium pentaquarks in Λ0
b decays at LHCb

Aaij et al. PRL 115, 072001 (2015)

Λ0
b −→ J/Ψ pK− seen

Λ0
b m = 5.6GeV, τ = 1.5ps

J/Ψ m = 3.1GeV, Γ = 93keV, Γµ+µ− = 6%

Λ∗ m = 1.4GeV or more, Λ∗ → K−p in 10−23s

−→ J/ΨΛ∗

−→ J/ΨP+
c

   

d
u
s
 
 

d
u
b

−c
c

Λb

J/ ψ

Λ  *
W 

−

   

d
u
c
−c
u

d
u
b

−u
s

Λb

K 

−

P  c 

   +

W 

−

state m [MeV] Γ [MeV] Γrel mode JP

P+
c (4380) 4380± 8± 29 205± 18± 86 (4.1± 0.5± 1.1)% J/ψ p 3

2

∓
or 5

2

+

P+
c (4450) 4450± 2± 3 39± 5± 19 (8.4± 0.7± 4.2)% J/ψ p 5

2

±
or 3

2

−



Appealing approach to new pentaquarks

Eides, Petrov, Polyakov, PRD93, 054039 (2016)
Perevalova, Polyakov, PS, PRD94, 054024 (2016)

• theoretical approach

RJ/ψ ≪ RN ⇒ non-relativistic multipole expansion Gottfried, PRL 40 (1978) 598
baryon-quarkonium interaction dominated by 2 virtual chromoelectric dipole gluons

Veff = − 1
2
α ~E2 Voloshin, Yad. Fiz. 36, 247 (1982)

• chromoelectric polarizability

α(1S) ≈ 0.2GeV−3 (pert),

α(2S) ≈ 12GeV−3 (pert),

α(2S → 1S) ≈

{
−0.6GeV−3 (pert),
±2GeV−3 (pheno),

in heavy quark mass limit & large-Nc limit
 “perturbative result” Peskin, NPB 156 (1979) 365

value for 2S → 1S transition from
phenomenological analysis of ψ′ → J/ψ π π data
Voloshin, Prog. Part. Nucl. Phys. 61 (2008) 455

• chromoelectric field strength:

~E2 = g2
(
8π2

bg2
T µµ + TG00

)

b = 11
3
Nc −

2
3
NF leading coeff. of β-function

g = strong coupling at low (nucleon) scale . 1GeV
gs = strong coupling at scale of heavy quark (gs 6= g)
TG00 = ξT00 with ξ = fractional contributions of gluon to MN

T µµ = T 00−T ii, stress tensor T ij =

(
ri

r

rj

r
−
1

3
δij
)

s(r)+δij p(r)

• universal effective potential

Veff = −1
2
α

8π2

b

g2

g2s

[

ν T00(r) + 3p(r)

]

, ν = 1 + ξs
b g2s
8π2

ν ≈ 1.5 estimate by Eides et al, op. cit.
Novikov & Shifman, Z.Phys.C8, 43 (1981);
X. D. Ji, Phys. Rev. Lett. 74, 1071 (1995)



• in future GPDs can help: GPDs ⇒ EMT form factors ⇒ EMT densities

⇒ universal potential Veff for quarkonium-baryon interaction!

• currently: e.g. chiral quark soliton model, Skyrme model

• compute quarkonium-nucleon bound state

solve

(

−
~∇2

2µ
+ Veff(r)

)

ψ = Ebindψ

µ = reduced quarkonium-baryon mass

-cc

u

   u

d
• results:

nucleon and J/ψ form no bound state

nucleon and ψ(2S) form 2 bound states with nearly degenerate masses around 4450MeV

in L = 0 channel, JP = 1
2

−
and 3

2

−
if α(2S) ≈ 17 GeV−3 (consistent with guideline from pert. calc.)

robust! Largely model-independent



• decay of Pc(4450)

cannot decay directly to ψ(2S) and nucleon, as Mψ(2S) +MN > 4450MeV

instead transition (2S) → (1S) governed by the same Veff
but with small α(2S → 1S) transition polarizability

⇒ it “takes time”

after the transition is “completed,”

prompt decay to J/ψ+nucleon

(observed final states)

estimated width is tens of MeV → compatible with data!

• first found in χQSM (Eides et al)

confirmed in Skyrme model (Perevalova et al)



• prediction: also ∆ and ψ(2S) form isospin-32 bound state

mass = 4.5GeV, Γ∆c̄c ∼ 60 MeV

negative parity (l = 0), spin 1
2 ≤ J ≤ 5

2

(states degenerate in heavy quark limit)

possibly also a broad isospin-32 resonance

mass = 4.9GeV, Γ∆c̄c ∼ 150 MeV

positive parity (l = 1), spin 1
2 ≤ J ≤ 7

2

decays → J/ψ+nucleon + pion
︸ ︷︷ ︸

∆-resonance

hyperon-quarkonium bound states are also possible! (Perevalova et al)

• what about P+
c (4380)?

cannot be charmonium-nucleon bound state

broader, more possibilities, threshold cusp effect



Summary & Outlook

• GPDs →֒ form factors of energy momentum tensor

mass decomposition, spin decomposition, and D-term!

• D-term: last unknown global property, related to forces

attractive and physically appealling → “motivation”

• recent development: knowledge of EMT densities

→ quarkonium-baryon interaction Veff

• naturally explains properties of P+
c (4450) observed at LHCb

rich potential, new predictions, ongoing work
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EMT densities from the Skyrme model as functions of r. The LO results are valid for any S = I in the large-Nc

limit. The estimates of NLO corrections in the 1/Nc-expansion are shown for states with the quantum numbers
S = I = 1
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The Figures show:
(a) energy density T00(r),
(b) shear forces s(r),
(e) r2p(r) with NLO corrections reconstructed from s(r).
(f) the local stability criterion 2

3
s(r) + p(r) > 0 (if it holds)

States with the exotic quantum numbers S = I ≥ 5/2 do not satisfy 2
3
s(r) + p(r) > 0

and have a positive D-term!! That’s why they do not exist!
(Perevalova, Polyakov, PS, PRD94, 054024)


