Fits to high precision DVCS data by PARTONS collaboration

Paweł Sznajder (on behalf of PARTONS Collaboration) National Centre for Nuclear Research, Warsaw

Nucleon and Resonance Structure with Hard Exclusive Production Orsay, 29-31 May 2017

Motivation

- PARTONS project \rightarrow see H. Moutarde's talk
- Fits to JLab DVCS data (classic approach)
- Neural network approach
- Summary

MOTIVATION

GPDs (Generalized Parton Distributions)

- 3D functions describing partonic structure of nucleon
- Each one defined for specific parton and specific helicity configuration
- Studied in various experimental channels
- In observables always convoluted with the hard scattering part

MOTIVATION

GPDs (Generalized Parton Distributions)

- 3D functions describing partonic structure of nucleon
- Each one defined for specific parton and specific helicity configuration
- Studied in various experimental channels
- In observables always convoluted with the hard scattering part

MOTIVATION

GPDs (Generalized Parton Distributions)

Nucleon tomography

$$q(x, \mathbf{b}_{\perp}^2) = \int \frac{d^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}} H^q(x, 0, t = -\mathbf{\Delta}^2)$$

Total angular momentum

$$\int_{-1}^{1} dx \ x \left[H^q(x,\xi,0) + E^q(x,\xi,0) \right] = 2J_q$$

Compton form factors fitted at LO and leading-twist approximation using dispersion relation technique:

• for GPD H

$$\Im m\mathcal{H}(\xi,t,Q^2) = \pi \sum_{q} e_q^2 \left[H^q(\xi,\xi,t,Q^2) - H^q(-\xi,\xi,t,Q^2) \right]$$
$$\Re e\mathcal{H}(\xi,t,Q^2) = \frac{1}{\pi} \text{P.V.} \int_0^1 d\xi' \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'} \right) \Im m\mathcal{H}(\xi',t,Q^2) + \mathcal{C}_{\mathcal{H}}(t,Q^2)$$

for other GPDs

$$\mathcal{C}_{\mathcal{H}}(t,Q^2) = -\mathcal{C}_{\mathcal{E}}(t,Q^2)$$
$$\mathcal{C}_{\widetilde{\mathcal{H}}}(t,Q^2) = \mathcal{C}_{\widetilde{\mathcal{E}}}(t,Q^2) = 0$$

FIT ANSATZ

GPDs H and H:

$$H^q(x, x, t, Q^2) = H^q(x, 0, t, Q^2) \times r^q(x)$$

border function

- composed of GPD at (x, 0, t)
- and skewness function

GPDs H:

$$\mathcal{C}_{\mathcal{H}}(t,Q^2) = C_{\mathrm{sub}} \times \exp\left(a_{\mathrm{sub}}t\right)$$

- so far proposed ad-hoc
- weak sensitivity of data on this term

$$\begin{aligned} \mathcal{E}(\xi, t, Q^2) = & N_E \times \mathcal{E}_{\mathrm{GK}}(\xi, t, Q^2) \\ \widetilde{\mathcal{E}}(\xi, t, Q^2) = & N_{\widetilde{E}} \times \widetilde{\mathcal{E}}_{\mathrm{GK}}(\xi, t, Q^2) \end{aligned}$$

subtraction constant

FIT ANSATZ FOR H AND \widetilde{H}

$$H^{q}(x, x, t, Q^{2}) = H^{q}(x, 0, t, Q^{2}) \times r^{q}(x) \qquad \qquad H^{q}(x, 0, t, Q^{2}) = q(x) \times x^{4q}$$

- GPD at (x, 0, t) line
- q(x) and $\Delta q(x)$ from NNPDF
- a_q for valence quarks fixed from $F_1(t)$ parameterization [1]

$$F_1^q(t) = \int_{-1}^1 dx H^q(x,\xi,t,Q^2)$$

- \cdot a_q for sea quarks fitted to data
- note relation between this term and nucleon tomography

[1] Phys. Rev. C79 (2009) 065204

FIT ANSATZ FOR H AND **\widetilde{H}**

fitted parameter

Image: Markov Markov

■ χ^2 / ndf 3272.6 / (3433 - 7) ≈ 0.96

Free parameters a_{Hsea}, a_{Hval}, a_{Hsea}, C_{sub}, a_{sub}, N_E, N_E

• χ^2 / ndf per data set

[1] Phys. Rev. C 92, 055202 (2015)
[2] Phys. Rev. Lett. 115, 212003 (2015)
[3] Phys. Rev. D 91, 052014 (2015)

Experiment	Reference	Observables	N points all	N points selected	chi2	chi2 / ndf
Hall A	[1] KINX2	σUU	120	120	135.0	1.19
Hall A	[1] KINX2	ΔσLU	120	120	98.9	0.88
Hall A	[1] KINX3	σUU	108	108	274.8	2.72
Hall A	[1] KINX3	ΔσLU	108	108	107.3	1.06
CLAS	[2]	σUU	1933	1333	1089.2	0.82
CLAS	[2]	ΔσLU	1933	1333	1171.9	0.88
CLAS	[3]	AUL, ALU, ALL	498	305	338.1	1.13

Values of parameters and correlation matrix

GPD	Parameter	Value	Error
Н	Cu val	1.21	-
Н	Cu sea	1.27	-
Н	Cd val	1.2	-
Н	Cd sea	1.27	-
Htilde	Cu val	1.07	-
Htilde	Cu sea	1.06	-
Htilde	Cd val	1.11	-
Htilde	Cd sea	1.07	-
Н	a val	0.74	-
Н	a sea	52.7	62.2
Htilde	a val	2.51	0.35
Htilde	a sea	0	1.35
Н	C sub	-0.81	0.16
Н	a sub	-0.39	0.6
E	Ν	-8.08	0.57
Etilde	Ν	-0.45	0.07

Can x - t dependence be described by $exp(-ln(x) a \cdot t)$?

Maybe exp(-ln(x) a (1 - x) t), exp(-ln(x) a (1 - x)² t), ... more appropriate? \rightarrow impact on nucleon tomography

Etilde

Ν

-0.45

0.07

• $\Delta \chi^2$ shape for 'Htilde a sea'

GPD	Parameter	Value	Error
Н	Cu val	1.21	-
Н	Cu sea	1.27	-
Н	Cd val	1.2	-
Н	Cd sea	1.27	-
Htilde	Cu val	1.07	-
Htilde	Cu sea	1.06	-
Htilde	Cd val	1.11	-
Htilde	Cd sea	1.07	-
Н	a val	0.74	-
Н	a sea	52.7	62.2
Htilde	a val	2.51	0.35
Htilde	a sea	0	1.35
Н	C sub	-0.81	0.16
Н	a sub	-0.39	0.6
E	Ν	-8.08	0.57
Etilde	Ν	-0.45	0.07
	GPD H H H H H H H H H H H H H H H H H H H	GPDParameterHCu valHCu seaHCd valHCd seaHtildeCu valHtildeCd valHtildeCd seaHtildeCd seaHtildeCd seaHa valHa seaHtildea seaHtildea seaHtildeA seaHA seaHA seaHA seaHA subHA subHA subHA subHA subHN	GPD Parameter Value H Cu val 1.21 H Cu sea 1.27 H Cd val 1.2 H Cd val 1.2 H Cd val 1.2 H Cd val 1.27 Htilde Cu val 1.27 Htilde Cu val 1.27 Htilde Cu val 1.07 Htilde Cu sea 1.06 Htilde Cd val 1.11 Htilde Cd sea 1.07 H a val 0.74 H a sea 52.7 Htilde a val 2.51 Htilde a sea 0 H C sub -0.81 H a sub -0.39 H a sub -0.39 E N -8.08 Etilde N -0.45

Unsymmetrical stat. uncertainty

PARTONS Fits 2016-1

preliminary

10

8

6

2

0

-10

 $\Delta \chi^2$

• $\Delta \chi^2$ shape for 'N_E' and 'N_{Etilde}'

10

 $\Delta \chi^2$

-5

-1

Unexpected sensitivity to GPD E

-7

-6

-9

-8

СE

CLAS: A_{UL} and A_{LL} @ $x_B = 0.26$, t = -0.23 GeV², Q² = 2.0 GeV², E = 5.9 GeV

Good description of experimental data, large systematics coming from Δq

Nucleon and Resonance Structure Workshop 2017

0.68 c.l.

Hall A: X2 kinematics: $d^4\sigma$ and $\Delta(d^4\sigma)$ @ $x_B = 0.39$, t = -0.23 GeV², Q² = 2.1 GeV², E = 5.8 GeV

Good description of experimental data

Nucleon and Resonance Structure Workshop 2017

0.68 c.l.

Hall A: X3 kinematics: $d^4\sigma$ and $\Delta(d^4\sigma)$ @ $x_B = 0.34$, t = -0.23 GeV², Q² = 2.2 GeV², E = 5.8 GeV

Unable to reproduce $d^4\sigma$ at this kinematics: wrong description of \tilde{E} , higher-twist effects, target mass corrections, ...?

0.68 c.l.

Compton form factors for GPD H @ t = -0.3 GeV², Q² = μ_F^2 = μ_R^2 = 2 GeV²

Strong suppression of sea contribution: is $exp(-a \ln(x) t)$ appropriate to describe x - t dependence? \rightarrow nucleon tomography

Paweł Sznajder

Compton form factors for GPD \tilde{H} @ t = -0.3 GeV², Q² = μ_F^2 = μ_R^2 = 2 GeV²

Smaller contribution w.r.t. VGG and GK

Nucleon and Resonance Structure Workshop 2017

NUCLEON TOMOGRAPHY

Nucleon and Resonance Structure Workshop 2017

input layer hidden layer output layer

- Machine learning technique
- Made of simple interconnected elements (neurons)
- Process data by dynamic state of neurons
- Need to be trained rather than to be predefined

NEURAL NETWORK

input layer hidden layer output layer

- As model independent as possible (almost no assumptions)
- Flexible to accommodate for new data
- Provides accurate estimation of uncertainties
- Perfect tool for:
 - summarizing of extraction status
 - designing of new experiments

NEURAL NETWORK

- Our very first attempt to use NN technique → proof of feasibility
- Genetic algorithm (GA) to learn NN
- NN and GA libraries by PARTONS group

- Very simple design of NN
- CLAS asymmetry data only
- χ^2 / ndf = 273.9 / (305 68) ≈ 1.16

SUMMARY

Fits to DVCS data: classic approach

- New way of fitting CFFs proposed
 - \rightarrow encoded access to nucleon tomography
 - \rightarrow small number of parameters
 - \rightarrow should work in wide kinematic domain
- Successful first attempt to fit high-precision JLAB data

Fits to DVCS data: neural network approach

Successful feasibility tests

Exploration phase

- proof of concept
- feasibility tests
- first measurements

Consolidation phase

- precise measurements by several experiments
- global fits
- extraction of properties

Precision phase

- more precise data
- coveraging "white spots"
- precision tests

based on A. Bacchetta's DIS'17 slides

Exploration phase

- proof of concept
- feasibility tests
- first measurements

Consolidation phase

- precise measurements by several experiments
- global fits
- extraction of properties

Precision phase

- more precise data
- coveraging "white spots"
- precision tests

based on A. Bacchetta's DIS'17 slides

Exploration phase

- proof of concept
- feasibility tests
- first measurements

Consolidation phase

- precise measurements by several experiments
- global fits
- extraction of properties

Precision phase

- more precise data
- coveraging "white spots"
- precision tests

based on A. Bacchetta's DIS'17 slides

Layered structure:

- one layer = collection of objects designed for common purpose
- one module = one physical development
- operations on modules provided by Services, e.g. for GPD Layer

- what can be automated is automated
- features improving calculation speed
 - e.g. CFF Layer Service stores the last calculated values

0	bservab	le Layer	
	DVCS	TCS	HEMP

Process L	ayer	
DVCS	TCS	HEMP

CFF Laye	r	
DVCS	TCS	HEMP

GPD Layer	
GPDs and Evolution	

Existing modules:

- GPD: GK11, VGG, Vinnikov, MPSSW13, MMS13
- Evolution: Vinnikov code
- CFF (DVCS only): LO, NLO (gluons and light or light + heavy quarks)
- Cross Section (DVCS only): VGG, BMJ, GV
- Running coupling: 4-loop PDG expression, constant value

H^u @ x = 0.2, t = -0.1 GeV², $\mu_F^2 = \mu_R^2 = 2 \text{ GeV}^2$

