DVCS cross sections from CLAS

Nicholas Hirlinger Saylor

West Hollywood, CA nicholas@hirlinger-saylor.com

May 28, 2017

West Hollywood, CA

Examining a Nucleon

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへの

Nicholas Hirlinger Saylor e1-dvcs2 Cross Sections

Gazing into a Nucleon

- What does the interior of a nucleon look like?
- What is its spin structure?
- Historically, we have answered the structure question in terms of Form Factors (FFs) and Parton Distribution Functions (PDFs)
- The spin structure is still quite a puzzle

Generalized Parton Distributions (GPDs)

- X. Ji, D. Müller, A. Radyushkin
- GPDs: Extension of FF and PDF concept
- Allows for simultaneous access of three dimensional picture
- GPDs may be accessed:
 - Deeply Virtual Compton Scattering (DVCS)
 - Deeply Virtual Meson Production (DVMP)

Accessing via DVCS - The Handbag Diagram

- GPDs can be accessed via DVCS
- X. Ji showed that the DVCS handbag diagram can be factorized into hard QED and soft QCD components
- The parametrizations of the QCD part are the GPDs
- Integrals over GPDs (Compton Form Factors (CFFs)) are accessed by measuring DVCS cross sections

< A

Bethe-Heitler

- When measuring the $e + p \rightarrow e' + p' + \gamma$ reaction, Bethe-Heitler is also inseparably measured.
- It is a known QED process

DVCS Cross Section

 $\sigma_{unp} \propto |\mathcal{M}_{BH}|^2 + 2 \mathcal{M}_{BH} \operatorname{Re}(\mathcal{M}_{DVCS}) + |\mathcal{M}_{DVCS}|^2$ $\sigma_{pol} \propto 2 \mathcal{M}_{BH} \operatorname{Im}(\mathcal{M}_{DVCS})$ (1)

West Hollywood, CA

Jefferson Laboratory

- Electron accelerator
- Newport News, VA, USA
- 6 GeV era experiment

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

West Hollywood, CA

Hall B, CLAS

CLAS detector was used for e1-dvcs1 and 2

Designed to have very large acceptance

West Hollywood, CA

e1-dvcs2 experiment

- 5.88 GeV
- Inner Calorimeter (IC) used for forward DVCS photons
- 424 PbWO₄ crystals
- $4^{\circ} 12^{\circ}$ polar acceptance
- LH2 (proton!) target, 19K, 5 cm

Steps to Obtain Cross Sections

- Particle Identification
- Define Kinematic Bins
- Exclusivity Cuts
- Construct Cross Sections

$$\frac{d^{4}\sigma_{unp}}{dQ^{2}dtdx_{B}d\Phi} = \frac{(N_{e+p+\gamma} - N_{e+p+\pi^{0}(1\gamma)})}{\mathcal{L}_{int}A\Delta VF_{rad}},$$

$$\frac{d^{4}\sigma_{pol}}{dQ^{2}dtdx_{B}d\Phi} = \frac{1}{2P} \left(\frac{d^{4}\sigma_{+}}{dQ^{2}dtdx_{B}d\Phi} - \frac{d^{4}\sigma_{-}}{dQ^{2}dtdx_{B}d\Phi}\right)$$
(3)

West Hollywood, CA

Cross Section Variables

- $t = (p_p p'_p)^2$
- $\hfill \phi$ angle between leptonic and hadronic plane

Nicholas Hirlinger Saylor e1-dvcs2 Cross Sections

Particle Identification

Electrons

- Triggered on Cherenkov detector
- Separated from MIPs with sampling fraction cut in CLAS electromagnetic calorimeters

Protons

• Separated from other positive charged particles by time-of-flight-cut, $\Delta\beta = \beta_{TOF} - \beta_{DC}$

Photons

Detected both in IC and CLAS electromagnetic calorimeters

Nicholas Hirlinger Saylor

990

Kinematical Domain

- 21 bins in x_B and Q^2
- 9 bins in t
- **24** bins in ϕ

West Hollywood, CA

Event Selection, Exclusivity Cuts

- **1** p_T : the perpendicular component of missing momentum in the $ep \rightarrow e'p'\gamma X$ reaction,
- **2** E_X : the missing energy in the $ep \rightarrow e'p'\gamma X$ reaction,
- 3 $MM^2_{e'+p'}$: the squared missing mass of the $ep \rightarrow e'p'X$ system,
- 4 $\theta_{X,\gamma}$: the difference between the calculated polar angle of the photon from the scattered electron and recoil proton measured kinematics $ep \rightarrow e'p'X$ and the detected one $ep \rightarrow e'p'\gamma$,
- **5** $\Delta \phi$: the coplanarity of the virtual photon, the real photon and the recoil proton.

Image: A math a math

Event Selection, Exclusivity Cuts

West Hollywood, CA

Neutral Pion Contamination, Removal

- Pion contamination occurs in the form of π_0 decaying, and one photon entering into CLAS or IC
- We cannot distinguish this from DVCS in experiment
- An estimation of the contamination can be made by using simulation
- We can calculate the ratio of $e + p + \pi_0(\gamma)$ to $e + p + \pi_0(\gamma\gamma)$ in simulation
- The ratio is the same in experiment, therefore one needs only $e + p + \pi_0(\gamma\gamma)$ in experiment

$$N_{\pi^0}^{\gamma} = N_{\pi^0}^{\gamma\gamma} rac{N_{\pi^0, \mathrm{sim}}^{\gamma}}{N_{\pi^0, \mathrm{sim}}^{\gamma\gamma}},$$

Image: A math a math

Neutral Pion Contamination, Removal

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ … ののの

Nicholas Hirlinger Saylor e1-dvcs2 Cross Sections

Acceptance, Simulation

- The acceptance of CLAS is calculated as $\frac{N_{rec}}{N_{gen}}$
- *N_{gen}* is the number of generatred events bin per bin
- N_{rec} is the number of reconstructed events bin per bin
- By reconstructed, we mean that they are simulated events that pass all PID and channel selection cuts

Acceptance, Simulation

- イロト イ団ト イヨト イヨト ヨー わえぐ

Nicholas Hirlinger Saylor e1-dycs2 Cross Sections

Radiative Corrections

- Radiative effects, both internal and external, are present in experiment
- In order to make the connection between the cross section describe in the theory section (the Born term), we must determine the ratio between the all-radiative-included cross section, and the Born cross section
- This has been done by several people
- The radiative corrections used in this analysis are performed by I. Akushevich

Radiative Corrections

Nicholas Hirlinger Saylor e1-dycs2 Cross Sections

Elastic Normalization

- CLAS requires an overall normalization factor
- E.g., the elastic cross section results in an overall lower cross section value than literature
- This is due to electron and proton detection/acceptance
- Photons do not suffer from this difficulty
- Therefore, the overall normalization based on the elastic channel is taken

Systematic Uncertainties

Source	Error (%)
Global Normalization	5
Exclusivity Cuts	5.5
Fiducial Cuts	4.2
Radiative Corrections	3
Total Estimate	10.3

West Hollywood, CA

Final Extraction of Cross Sections

Nicholas Hirlinger Saylor e1-dvcs2 Cross Sections West Hollywood, CA

A D > A D > A

Final Extraction of Cross Sections

Nicholas Hirlinger Saylor e1-dvcs2 Cross Sections

Final Extraction of Cross Sections

▲ロ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → ⑦ � @ ▶

West Hollywood, CA

• • • • • • • •

Final Extraction of Cross Section Differences

Nicholas Hirlinger Saylor e1-dvcs2 Cross Sections

Results

Final Extraction of Cross Section Differences

Nicholas Hirlinger Saylor e1-dvcs2 Cross Sections

Results

Final Extraction of Cross Section Differences

Nicholas Hirlinger Saylor e1-dvcs2 Cross Sections

Comparison with e1-dvcs1

- Experiments are at different kinematics
- Beam energies are different
- Target and geometry are different

Comparison with e1-dvcs1, with beam corrections

- A correction was worked out to take into account the different in beam energy between e1-dvcs1 and 2
- A substantial improvement results

Status of Publication

- We plan to submit to Physics Review C
- Internal analysis review complete
- Ad Hoc review in progress
- Collaboration wide review to do
- Journal submission to do

< A

Questions?

Nicholas Hirlinger Saylor e1-dvcs2 Cross Sections ৰ≣া ≣া পি ৭০ West Hollywood, CA

・ロン ・日子・ ・ ヨン