Status and sensitivity of the SuperNEMO demonstrator

Steven Calvez, GdR Neutrino May 2017

Steven Calvez 🗞 calvez@lal.in2p3.fr

supernemo

collaboration

Outline

- The SuperNEMO experiment
- Status of the demonstrator integration
- Particle reconstruction and identification
- Sensitivity of the demonstrator

The SuperNEMO experiment

 SuperNEMO is a 0vββ experiment combining tracking and calorimetry techniques.

The demonstrator design

Integration of the demonstrator in LSM

Mechanical structure and clean tent : LAL

Assembly of the support frame and the temporary clean tent.

Integration of the demonstrator in LSM Calorimeter : CENBG and LAL

 Assembly of the calorimeter frame and populating it with calorimeter blocks

	First		2 nd	
Mechanical	colo	2016	cale	2017
structure ZU tent	Calo	ZUIU	Calo.	2017
	main wall	r	nain wall	
MIAIMIJIJIAISIOINID	JIFIMIA	AIMIJIJIA	SIOINID] F Μ Α Μ]] Α S Ο Ν

Integration of the demonstrator in LSM $_{\mbox{Tracker}\,:\,\mbox{UK}}$

Delivery and assembly of the 4 tracker sections.

Integration of the demonstrator in LSM

Commissioning

Commissioning of one half of the demonstrator is underway.

Integration of the demonstrator in LSM Source : LAPP

Installation of the source strips.

	1	Т	1 1		1	1	1	1		1	Т	1	Т	Т	1	1	1		_		1	Т						T
						th											2nd	2'	d							Sour	ce	
Mechanical	2	\cap	Clean		tracl	ker			riis			-) (٦.	Half		alo.	ha	lf				- 7	n	11	nstalla	tion	1
structure		U	tent	' .	deliv	ery		ma	in v	 vall			<u> </u>	1	tracker	ma	in wa	II trac	ker	Half c	letec	tor		. U	1	1		
																		aeiiv	/ery	comm	55101	ning						
MIAIM	IJ	IJ	A	S	10	ιN	I D	J	F	M	I A	M	IJ	1	JA	I S	0	N	D	J	FIN	4 .	AII	M 1	1	JIAI	s ₁ 0	I N

Integration of the demonstrator in LSM

Magnetic coil and shieldings : LPC and LAL

 Assembly of the magnetic coil, the anti-radon tent and the shieldings (pure iron and water).

Goals of the demonstrator

- Run for 2.5 years with 7 kg of ⁸²Se (and maybe ¹⁵⁰Nd in a second phase if the enrichment is mastered)
- Prove SuperNEMO can be a background-free experiment in the Region of Interest

$$\mathsf{T}_{1/2}^{0
u, \mathsf{lim}} \propto \left\{ egin{array}{ll} m \cdot t & & \mathsf{without background} \ \sqrt{rac{m \cdot t}{b \cdot \Delta E}} & & \mathsf{with background} \end{array}
ight.$$

with *m* the mass of $\beta\beta$ -isotope, *t* the acquisition time, *b* the background rate in counts.keV⁻¹.kg⁻¹.y⁻¹ and ΔE the energy resolution.

Background origins

Main backgrounds :

 \rightarrow A contamination of the source in β/γ emitters : mainly ²⁰⁸TI and ²¹⁴Bi because of their high transition energy.

 \rightarrow Radon in the tracker gas : daugther nuclei depositing close to the source and decaying to $^{214}\text{Bi}.$

= radioisotope; β = electron from β -decay; IC = internal conversion

Comparison between NEMO-3 and SuperNEMO

	NEMO3	SuperNEMO
Mass	7 kg	7 kg 100 kg
lsotopes	¹⁰⁰ Mo	⁸² Se
	among 7 isotopes	(¹⁵⁰ Nd, Copper,)
Calo. energy res. @ $Q_{\beta\beta}$		
FWHM - σ	8 % - 3.4 %	4 % - 1.7 %
Backgrounds :		
A(²⁰⁸ TI)	$\sim 100~\mu { m Bq/kg}$	\leq 2 μ Bq/kg
A(²¹⁴ Bi)	\sim 300 μ Bq/kg	\leq 10 μ Bq/kg
A(Radon) in tracker	$\sim 5 \text{ mBq/m}^3$	$\leq 0.15 \text{ mBq/m}^3$
0v efficiency	18 %	30 %
Exposure	35 kg∙y	17.5 kg·y 500 kg·y
Sensitivity		
$T_{1/2}^{0\nu2\beta}$ (90% C.L.)	$> 1.1 \ 10^{24}$	$> 6 \; 10^{24}$ y $ > 10^{26}$ y
$\langle m_{\beta\beta} \rangle$	< 0.33 - 0.87 eV	$<$ 0.2 - 0.55 eV \mid $<$ 0.04 - 0.1 eV

- Electron : a negatively curved track with an associated calorimeter hit.
- Positron : a positively curved track with an associated calorimeter hit.
- Alpha : a (delayed) short straight track.
- Gamma : One or more unassociated calorimeter hits.

- Electron : a negatively curved track with an associated calorimeter hit.
- Positron : a positively curved track with an associated calorimeter hit.
- Alpha : a (delayed) short straight track.
- Gamma : One or more unassociated calorimeter hits.

- Electron : a negatively curved track with an associated calorimeter hit.
- Positron : a positively curved track with an associated calorimeter hit.
- Alpha : a (delayed) short straight track.
- Gamma : One or more unassociated calorimeter hits.

- Electron : a negatively curved track with an associated calorimeter hit.
- Positron : a positively curved track with an associated calorimeter hit.
- Alpha : a (delayed) short straight track.
- Gamma : One or more unassociated calorimeter hits.

Event reconstruction

• Display of a $0\nu\beta\beta$ event from Monte-Carlo simulations (top view).

Gamma reconstruction

- γ's can bounce around in the detector and hit several calorimeter blocks.
- Need a dedicated algorithm based on the Time-Of-Flight to reconstruct the γ particles : the γ-tracko-clustering
- Trade off between pure tracking (TOF only) and simple clustering (neighbouring hits only).

 Number of γ's and energy reconstructed more accurate.

Dedicated background channels

Dedicated background channels

 Measure Radon with the 1e1α(Nγ) events from the tracker:

 A(Radon) = 150 µBq/m³ can be measured with a 10 % stat. uncertainty in less than a week

Background measurement : $^{\rm 208}{\rm TI}$ and $^{\rm 214}{\rm Bi}$

Use discriminating variables in the 1e1γ, 1e2γ and 1e3γ channels to measure the ²⁰⁸Tl and ²¹⁴Bi source contaminations:

Background measurement : $^{\rm 208}{\rm TI}$ and $^{\rm 214}{\rm Bi}$

 Global fit on several distributions across different channels for a pseudo-experiment :

Background measurement : ²⁰⁸Tl and ²¹⁴Bi

The uncertainty on the measurement is obtained from the distribution of the activities measured in a large number of pseudo-experiments.

 10 % stat. uncertainty in 8 months on A(²⁰⁸TI) = 2 μBq/kg

▶ 10 % stat. uncertainty in **3 months** on A(²¹⁴Bi) = 10 μ Bq/kg

Background measurement : ²⁰⁸Tl and ²¹⁴Bi

The uncertainty on the measurement is obtained from the distribution of the activities measured in a large number of pseudo-experiments.

- ► 10 % stat. uncertainty in 8 months on A(208 TI) = 2 µBq/kg
- ► 10 % stat. uncertainty in 3 months on $A(^{214}Bi) = 10 \ \mu Bq/kg$

Background measurement : $2\nu\beta\beta$

 Global fit on discriminating variables in the 1e and 2e channels to measure the 2νββ half-life:

Background measurement : $2\nu\beta\beta$

 Measure the 2νββ half-life on several pseudo-experiments : 0.4 % stat. uncertainty with the demonstrator (17.5 kg·y)

$0\nu\beta\beta$ sensitivity

- For the mass mechanism, considering the demonstrator expected conditions, namely A(²⁰⁸TI) = 2μBq/kg, A(²¹⁴Bi) = 10μBq/kg, A(Radon) = 150μBq/m³ with a 17.5 kg·y exposure
- \blacktriangleright Select $\beta\beta$ -like events and look at the energy sum spectrum :

 $0\nu\beta\beta$ sensitivity using multivariate analysis

- Train BDTs from ROOT's TMVA to discriminate signal events from background events using topological information from the 2e channel.
- Energy variables are correlated but the vertices separation and the internal probability are helpful discriminating variables.
- Compare the sensitivity obtained using the two electrons energy sum spectrum or the BDT score and using the CLs technique.

Impact of the background levels

Sensitivity depending on the different background levels

Conclusion

- Thanks to its tracking capabilities, SuperNEMO can use dedicated channels to accurately characterize the background (even ultra-low level contaminations).
- The multivariate analysis improves the sensitivity by at least 10 % considering the stringent background levels are reached, and more otherwise (90 % sensitivity increase assuming the NEMO3 background levels).
- The demonstrator is being commissioned and the data taking should start in the Autumn 2017
- The demonstrator should reach a sensitivity of

$$\begin{split} T_{1/2}^{0\nu} &> 5.9 \ 10^{24} \ \text{y} \ 90 \ \% \ \text{C.L.} \\ & \langle m_{\beta \, \beta} \rangle < 200 \ \text{-} \ 550 \ \text{meV} \end{split}$$

BACKUP

Choice of isotope

• Table of the double beta emitters with their transition energy $Q_{\beta\beta}$, their natural isotopic abundance, the $2\nu\beta\beta$ half-life and the $0\nu\beta\beta$ phase space factor $G_{0\nu}$.

Isotope	$Q_{\beta\beta}$ (keV)	η (%)	$T_{1/2}^{2\nu}$ (10 ²¹ y)	$G_{0\nu} (10^{-25} y^{-1})$
⁴⁸ Ca	4272	0.187	0.064	2.439
⁷⁶ Ge	2040	7.61	1.926	0.244
⁸² Se	2995	8.73	0.096	1.079
¹⁰⁰ Mo	3034	9.63	0.007	1.754
^{116}Cd	2805	7.49	0.028	1.894
¹³⁰ Te	2529	33.8	0.82	1.698
¹³⁶ Xe	2479	8.9	2.165	1.812
¹⁵⁰ Nd	3368	5.6	0.009	8.000

The γ tracko-clustering

- The γ-clustering, a la NEMO3, relies mainly on geometry. It gathers the neighbouring unassociated calorimeter hits into clusters to which is associated a new γ.
- The γ -tracking is based on Time-Of-Flight (TOF) calculations.

$$\chi_{int}^{2} = \frac{\left((t_{2}^{exp} - t_{1}^{exp}) - \frac{\ell_{1 \to 2}}{c} \right)^{2}}{\sigma_{t_{1}}^{2} + \sigma_{t_{2}}^{2} + \sigma_{\ell}^{2}}$$
$$P(\chi_{int}^{2}) = 1 - \frac{1}{\sqrt{2\pi}} \int_{0}^{\chi_{int}^{2}} x^{-\frac{1}{2}} e^{-\frac{x}{2}} dx$$

The γ -tracko-clustering

The algorithm first performs a standard clustering...

The γ -tracko-clustering

...then links the clusters based on TOF probability

Number of γ 's reconstructed in ²¹⁴Bi

 Between 0 and 2 γ's emitted : γ-clustering overestimates the number of γ's

Example of ²¹⁴Bi : spectra comparison

Highest enery γ spectrum in the ²¹⁴Bi 1e2γ channel : the γ-clustering splits γ's

BDT configuration

- Split the samples in 4 (A,B,C,D), train on A+B, test on B and C, and conversely.
- Configuration "slow training":
 - AdaBoost : $\beta = 0.2$
 - 1200 trees
 - Minimal node size : 50 events
 - Maximal tree depth : 3
 - Separation index : Gini index