NEMO-3 latest results

Thibaud Le Noblet – LAPP On behalf of the NEMO collaboration

GdR neutrino 29-30 mai 2017 - APC

supernemo

collaboration

- Neutrinoless double beta decay
- Tracker-calorimeter technique NEMO-3 detector
- Latest results from NEMO-3
- Some exotic searches

Neutrinoless double beta decay

- Process forbidden in the SM
- Test Dirac/Majorana nature of neutrinos
- Half-life strongly suppressed

Phase space

(well known)

Nuclear matrix elements (challenging to compute)

Take into account the mechanism underlying the 0νββ process

• Few different mechanisms may induce $0\nu\beta\beta$:

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z)|M_{0\nu}|^2\eta^2$

- Light Majorana exchange
- Right-handed current (V+A), Majoron, SUSY etc.
- Different topology in the final state

The tracker-calorimeter technique

- Source separated from detector : many $\beta\beta$ isotopes can be investigated
- Reconstruction of the final state topology and particle identification :
 - Excellent background suppression
 - Possible discrimination of mechanism behind $0\nu\beta\beta$ process

 Generally poorer energy resolution and detection efficiency than homogeneous detector (HPGe and bolometers)

The NEMO-3 detector

- ββ decay experiment which combines both tracker and calorimetric measurements
- Took data from February 2003 to January 2011
- Located in the Modane underground laboratory (LSM) at ~4800 m.w.e
- Investigated 7 different $\beta\beta$ isotopes
- Divided into 20 identical sectors

- Central $\beta\beta$ source plane made of 7 different isotopes : ¹⁰⁰Mo (7 kg), ⁸²Se (1 kg), ¹³⁰Te, ¹¹⁶Cd, ¹⁵⁰Nd, ⁹⁶Zr, ⁴⁸Ca
- Ultra-pure Cu and very pure natTe blank foils to cross check background measurements
 - Wire drift chamber made of 6180 Geiger cells, $\sigma_{vertex} = 3 \text{ mm (XY)}, 10 \text{ mm (Z)}$
 - Calorimeter made of 1940 polystyrene scintillators coupled with low radioactivity PMTs, FWHM ~15 % at 1 MeV
- 25 Gauss magnetic field for the charge identification
- Gamma and neutron shields, anti-radon tent

Internal Backgrounds

Regroups the backgrounds coming from the source foil, mainly come from :

- Radio-impurities inside the source foil
 - ²⁰⁸Tl (from ²³²Th), ²¹⁴Bi (from ²³⁸U)
 - Single beta emitter (⁴⁰K, ^{234m}Pa, ²¹⁰Bi)
- ²¹⁴Bi from radon decay in tracker volume

Backgrounds are measured through different background channels using event topologies

- ²⁰⁸Tl in 1e1 γ , 1e2 γ and 1e3 γ
- ⁴⁰K, ^{234m}Pa, ²¹⁰Bi in 1e channel
- ${}^{214}\text{Bi} {}^{222}\text{Rn}$ in $1e1\alpha$ and $1e1\gamma$ channel

External Backgrounds

Regroups the backgrounds not coming from the source foil, come from :

- Radio-impurities in detector material (²⁰⁸Tl, ²¹⁴Bi)
- γ from (n, γ) reactions
- µ Bremsstrahlung

Are measured in 2 main channels, requiring the timing informations :

- external crossing electron
- external $\gamma \rightarrow e$

⁴⁸Ca results

- 7 g distributed in 9 CaF2 disks
- ⁴⁸Ca: highest $Q_{\beta\beta} = 4.3$ MeV above almost all backgrounds
- Most precise measurement of the $2\nu\beta\beta$ decay rate to date :

 $T_{1/2}^{2\nu\beta\beta} = 6.4^{+0.7}_{-0.6}(\text{stat.})^{+1.2}_{-0.9}(\text{syst.}) \times 10^{19} \text{ yr}$

Limits set for different $0\nu\beta\beta$ mechanisms

$$T_{1/2}^{0\nu\beta\beta} > 2.0 \times 10^{22} \text{ yr } (90\% \text{ C.L.})$$

$$\langle m_{\nu} \rangle < 6.0 - 26 eV$$

No events observed for E > 3.4 MeV, promising for background free searches with SuperNEMO

¹⁵⁰Nd results

- 36.6 g contained in a strip
- $^{150}Nd: Q_{\beta\beta} = 3.4 \text{ MeV}$ and the largest phase space of any isotope
- Most precise measurement of the $2\nu\beta\beta$ decay rate to date :

 $T_{1/2}^{2\nu} = [9.34 \pm 0.22 \,(\text{stat.}) \,{}^{+0.62}_{-0.60} (\text{syst.})] \times 10^{18} \,\text{yr}$

- 0νββ:
 - First use of BDT to increase sensitivity by 10 %
 - Limits set for different mechanisms

$$T_{1/2}^{0\nu\beta\beta} > 2.0 \times 10^{22} \,\mathrm{yr} \,(90\% \,\mathrm{C.L.})$$

 $\langle m_{\nu} \rangle < 1.6 - 5.3 \,\mathrm{eV}$

3.5

4.5

E_{TOT} (MeV)

¹¹⁶Cd results

Phys.Rev. D95 (2017), 012007

- 410 g distributed in 5 five strips
- $^{116}Cd: Q_{\beta\beta} = 2.8 \text{ MeV}$ and is a candidate isotope for futur $0\nu\beta\beta$ experiments (CdZnTe pixels)
- High precision measurement of the $2\nu\beta\beta$ decay rate :

$$T_{1/2}^{2\nu} = [2.74 \pm 0.04 \,(\text{stat.}) \pm 0.18 \,(\text{syst.})] \times 10^{19} \,\text{yr}$$

- 0νββ :
 - Use of a multivariate analysis
 - Limits set for different mechanisms

$$T_{1/2}^{0\nu\beta\beta} > 1.0 \times 10^{23} \text{ yr } (90\% \text{ C.L.})$$

$$\langle m_{\nu} \rangle < 1.4 - 2.5 eV$$

Searches for exotic processes

Decay via the excited states

- The double beta decay can also occurs via the excited state of the daughter nucleus
- Provide additional handle for NME calculations
- Alternative channel to study an hypothetical $0\nu\beta\beta$ signal
- Might help to distinguish alternative $0\nu\beta\beta$ decay mechanisms
- Signature : 2e + one or more mono $enertic \gamma in coincidence$
- Background is highly suppressed

- Several isotopes have already been investigated
 - ¹⁵⁰Nd (S. Blondel Ph.D. thesis 2013)

 $T_{1/2}(^{150}\text{Nd}_{0^+ \to 0^+_1}) = [7, 12 \pm 1, 28 \text{ (stat.)} \pm 0, 91 \text{ (syst.)}] \times 10^{19} \text{ ans}$

 $T_{1/2}^{2\beta0\nu}({}^{150}\mathrm{Nd}_{0^+\to 0^+_1}) > 1, 6 \times 10^{21} \,\mathrm{ans}$

 $T_{1/2}^{2\beta 2\nu}({}^{150}\mathrm{Nd}_{0^+\to 2^+_1})>2, 4\times 10^{20}\,\mathrm{ans}$

• ⁹⁶Zr (G. Eurin Ph.D. thesis 2015)

80

70 60

50 40 30

20 10

$$T_{1/2}^{2\nu2\beta}({}^{96}\text{Zr} \rightarrow {}^{96}\text{Mo}, 0_1^+) > 5.85 \times 10^{19} \text{ y} @ 90\% \text{ C.L}$$

• ⁸²Se (B. Soulé Ph.D. thesis 2015)

$$\begin{split} T^{2\nu}_{1/2}(^{82}Se,0^+_1 \to 0^+_1) &= (10,87 \pm 0,15(stat.) \pm 0,80(syst.)) \times 10^{19} \text{ ans} \\ T^{0\nu}_{1/2}(^{82}Se,0^+_1 \to 0^+_2) > 2,31 \times 10^{22} \text{ ans} \end{split}$$

Decay via the excited states

- ¹¹⁶Cd → ¹¹⁶Sn analysis via the excited states (2+) and (0+) are on going in 2v and 0v decay modes :
 - Use the same background model implemented for ¹¹⁶Cd decay to the ground state.
 - Use the rich informations provided by full event reconstruction to perform a multi-variate analysis.
 - According to the excited states 7 or 8 variables are used such as electron energy, photon energy, angle, TOF...

For the excited state (2+) $~2\nu,$ a sensitivity of $T_{_{1/2}}>5.7~x~10^{_{20}}~y$ is expected

Quadruple beta decay

Neutrinoless quadruple beta decay

- Proposed by Heeck and Rodejohann [1]
- Lepton number violating process
- Neutrinos are Dirac particle and $0\nu\beta\beta$ is forbidden
- The best candidate is ${}^{150}Nd \rightarrow {}^{150}Gd + 4e (Q_{4\beta} = 2.079 \text{ MeV})$

Exploit the unique ability of NEMO-3 to reconstruct the kinematics of each e-

Thibaud LE NOBLET

1] Europhys. Lett. 103, 32001 (2013) **16**

Searches for periodic modulation in decay rate

- Nuclear decays are governed by various fundamental forces and are considered unaffected by the external temporal or environmental effects.
- Modulations in nuclear decay rate may point toward physics beyond standard model.
- Some experiments claim the observation of modulation of decay rate (BNL : ³²Si)

BNL experiment Astropart.Phys. 32 (2009) 42-46

- NEMO-3 ran during over 7 years.
- Use the ¹⁰⁰Mo sample (largest and cleanest $\beta\beta$ sample in NEMO-3)
- First search for periodic variation in the $2\nu\beta\beta$ decay rate
- No evidence of periodic modulations has been found (publication soon)

- Final searches to $0\nu\beta\beta$ have been published : ^{100}Mo , ^{116}Cd , ^{150}Nd , ^{48}Ca
- Most precise measurement of $2\nu\beta\beta$ decay rate for ¹¹⁶Cd and ¹⁵⁰Nd published so far
- Non competitive limits on $0\nu\beta\beta$ (due to limited exposure), but proof of concept for SuperNEMO.
- First use of multivariate techniques to enhance signal/background discrimination and sensitivity
- Some exotic searches have also been performed
 - Study of $\beta\beta$ decay to excited state performed over ¹⁵⁰Nd, ⁸²Se, ⁹⁶Zr and ¹¹⁶Cd
 - Searches for $0\nu4\beta$ on going : arXiv:1705.08847v1
 - Searches for periodic modulation of $^{100}\mathrm{Mo}~2\nu\beta\beta$ decay rate : publication soon
- Final search for ⁸²Se is under finalisation $(2\nu\beta\beta$ and $0\nu\beta\beta)$
- Future : SuperNEMO is currently under construction (more details S. Calvez's presentation)

The backgrounds

- Internal backgrounds :
 - ²⁰⁸Tl (from ²³²Th), ²¹⁴Bi (from ²³⁸U) contamination in foil source
 - ²¹⁴Bi from radon decay in tracker volume
 - Single beta emitter (⁴⁰K, ^{234m}Pa, ²¹⁰Bi)

- External backgrounds :
 - Radio-impurities in detector material (²⁰⁸Tl, ²¹⁴Bi)
 - γ from (n, γ) reactions
 - µ Bremsstrahlung

²¹⁴Bi and Radon

- ^{214}Bi is a dangerous background with $Q_\beta = 3.3~MeV$
- Arise from ²³⁸U-chain or ²²²Rn emanation
- Measured in $1e1\alpha$ channel

- Background free measurement
- Alpha track length sensitive to different contamination origin

Searches for periodic modulation in decay rate

• In their *Radiations from Radioactive Substances*, E. Rutherford, J. Chadwick and Charles Ellis concluded :

 \ll the rate of transformation $[\ldots]$ is a constant under all conditions \gg

- Is the decay « constants » are influenced by the Sun ? By which phenomena ? Influence of solar neutrino ? arXiv:0808.3283
- An experiment performed at Brookhaven National Laboratory (BNL), between 1982 and 1986, by studying silicon-32, found that its half-life modulated around its usual value (172 y) by the order of 0.1 %.
- The modulation appeared to be almost in phase with the varying distance of the Earth to the Sun: in January, when the Earth is closest, the decay rate was faster; in July, when the Earth is farthest, it was slower.
- The variation of the decay rate have also been claimed for Manganese-54 arXiv:0808.3156
- The results are controversial, and the physics community is skeptical. Very small deviation and what about the stability of the detectors ?

Only 3 candidates

	$Q_{0\nu4\beta}$	Other decays	NA
$^{96}_{40}\mathrm{Zr} ightarrow ^{96}_{44}\mathrm{Ru}$	0.629	$\tau_{1/2}^{2\nu2\beta} \simeq 2 \times 10^{19}$	2.8
$^{136}_{54}{\rm Xe} \to {}^{136}_{58}{\rm Ce}$	0.044	$\tau_{1/2}^{2\nu 2\beta} \simeq 2 \times 10^{21}$	8.9
$^{150}_{60}\mathrm{Nd} \to {}^{150}_{64}\mathrm{Gd}$	2.079	$\tau_{1/2}^{2\nu 2\beta} \simeq 7 \times 10^{18}$	5.6

Estimated life-time :

$$\frac{\tau_{0\nu4\beta}}{\tau_{2\nu2\beta}} \simeq 10^{46} \left(\frac{\Lambda}{\text{TeV}}\right)^4$$

4n4b is killed by the Q-dependance of the eight-particle phase space ~ Q^{23} (compared to Q^{11} for 0n4b)

Very uncertain and little phenemenoly in the literature

Due to the absence of a complete theoretical treatment of the kinematics of 0n4b decays, 4 models of the electron energy distribution have been tested

- Uniform $Q_{0n4b} = E_1 + E_2 + E_3 + E_4$ (distributed uniformly)
- Symmetric $A_m = \mathcal{S}\{1 \times 1\}$
- Semi-symmetric $A_m = \mathcal{S}\{1 \times (T_k T_l)^2\}$
- Anti-symmetric $A_m = S\{(T_i T_j)^2 \times (T_k T_l)^2\}$

$$\frac{\mathrm{d}^4 N}{\prod_{i=1}^4 \mathrm{d} T_i} \propto A_m \delta \left(Q_{4\beta} - \sum_{i=1}^4 T_i \right) \cdot \prod_{i=1}^4 (T_i + m_e) p_i F(T_i, Z),$$

 $S\{\ldots\}$ is a sum over the symmetric interchange of label i,j,k,l of the four electrons

Decay via the excited states

Background measurements

Backgrounds are measured through different background channels using event topologies

Internal backgrounds are measured in 5 channels :

- $1e ({}^{40}K, {}^{234m}Pa, {}^{210}Bi)$
- $1e1\alpha$ (²¹⁴Bi ²²²Rn)
- $1e1\gamma$ (²¹⁴Bi and ²⁰⁸Tl)
- $1e2\gamma$ (²⁰⁸Tl)
- $1e3\gamma$ (²⁰⁸Tl)

External backgrounds are measured in 2 main channels :

- external crossing electron
- external $\gamma \rightarrow e$

E_e+E_v (MeV)

Figures from Phys.Rev. D95 (2017), 012007

• Several isotopes have already been investigated

Decays	$T_{_{1/2}}$ [y] at 90 % C.L.			
	$^{82}\mathrm{Se}_{\mathrm{B.~Soul\acute{e}}}$ B. Soulé Ph.D. thesis 2015	$^{96}{ m Zr}$ G. Eurin Ph.D. thesis 2015	¹⁵⁰ Nd S. Blondel Ph.D. thesis 2013	
$(g.s \rightarrow 0^+) \ 2\nu\beta\beta$	$> 1.29 \ge 10^{21}$	$> 5.85 \ge 10^{19}$	$(7.12 \pm 1.28 \pm 0.91) \ge 10^{19}$	
$(g.s \rightarrow 0^+) \ 0 \nu \beta \beta$	$> 2.31 \ge 10^{22}$	_	$> 1.6 \ge 10^{21}$	
$(g.s \rightarrow 2^+)$ $2\nu\beta\beta$	_	-	$> 2.4 \ge 10^{20}$	
$(g.s \rightarrow 2^+) \ 0 \nu \beta \beta$	_	-	_	