



# Neutrino physics at colliders

#### Cédric Weiland

#### Institute for Particle Physics Phenomenology, Durham University

#### GdR Neutrino APC, Université Paris-Diderot, 30 May 2017







Cédric Weiland (IPPP Durham)

#### Neutrino phenomena

- Neutrino oscillations (best fit from nu-fit.org): solar  $\theta_{12} \simeq 34^{\circ} \qquad \Delta m_{21}^2 \simeq 7.5 \times 10^{-5} eV^2$ atmospheric  $\theta_{23} \simeq 42^{\circ} \qquad |\Delta m_{23}^2| \simeq 2.5 \times 10^{-3} eV^2$ reactor  $\theta_{13} \simeq 8.5^{\circ}$
- Absolute mass scale: cosmology  $\Sigma m_{\nu_i} < 0.23 \text{ eV}$  [Planck, 2016]  $\beta$  decays  $m_{\nu_e} < 2.05 \text{ eV}$  [Mainz, 2005; Troitsk, 2011]



- SM: no 
   *ν* mass term, lepton flavour is conserved
   ⇒ need new Physics
  - Radiative models
  - Extra dimensions
  - R-parity violation in supersymmetry
  - Seesaw mechanisms  $\rightarrow \nu$  mass at tree-level
    - + BAU through leptogenesis

 $m_2^2$  $m_1^2$ 

#### Dirac neutrinos ?

• Add gauge singlet (sterile), right-handed neutrinos  $\nu_R \Rightarrow \nu = \nu_L + \nu_R$  $\mathcal{L}_{mass}^{\text{leptons}} = -Y_\ell \bar{L} \phi \ell_R - Y_\nu \bar{L} \tilde{\phi} \nu_R + \text{h.c.}$ 

 $\Rightarrow \text{After electroweak symmetry breaking } \langle \phi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix} \\ \mathcal{L}_{\text{mass}}^{\text{leptons}} = -m_{\ell} \bar{\ell}_{L} \ell_{R} - m_{D} \bar{\nu}_{L} \nu_{R} + \text{h.c.}$ 

 $3\nu_R \Rightarrow 3$  light active neutrinos:  $m_\nu \leq 1 \text{eV} \Rightarrow Y^\nu \leq 10^{-11}$ 



### Majorana neutrinos ?

• Add gauge singlet (sterile), right-handed neutrinos  $\nu_R$  $\mathcal{L}_{mass}^{\text{leptons}} = -Y_\ell \bar{L} \phi \ell_R - Y_\nu \bar{L} \tilde{\phi} \nu_R - \frac{1}{2} M_R \overline{\nu_R} \nu_R^c + \text{h.c.}$ 

 $\Rightarrow \text{After electroweak symmetry breaking } \langle \phi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$  $\mathcal{L}_{\text{mass}}^{\text{leptons}} = -m_{\ell} \ell_L \ell_R - m_D \bar{\nu}_L \nu_R - \frac{1}{2} M_R \overline{\nu_R} \nu_R^c + \text{h.c.}$ 

 $3\nu_R \Rightarrow 6$  mass eigenstates:  $\nu = \nu^c$ 

- v<sub>R</sub> gauge singlets
  - $\Rightarrow$  M<sub>R</sub> not related to SM dynamics, not protected by symmetries
  - $\Rightarrow$   $M_R$  between 0 and  $M_P$
- Experimental test of the neutrino nature ?
  - $\Rightarrow$  Processes that violate lepton number by  $\Delta L = \pm 2$ 
    - $0\nu 2\beta$ : see talks by A. Giuliani, T. Le Noblet, S. Calvez
    - same-sign dilepton at colliders
    - LNV meson decays

#### Minimal seesaw mechanisms

- Seesaw mechanism: new fields + lepton number violation
  - $\Rightarrow$  Generate  $m_{\nu}$  in a renormalizable way and at tree-level
- 3 minimal tree-level seesaw models  $\Rightarrow$  3 types of heavy fields
  - type I: right-handed neutrinos, SM gauge singlets
  - type II: scalar triplets
  - type III: fermionic triplets



[Minkowski, 1977, Gell-Mann et al., 1979, S Yanagida, 1979, Mohapatra and Senjanovic, 1980] L



[Magg and Wetterich, 1980,

Schechter and Valle, 1980, Wetterich, 1981, Lazarides et al., 1981,

Mohapatra and Senjanovic, 1981]



#### Searches for heavy Majorana neutrinos







q

ā

## Searches for doubly-charged scalars

- Type II seesaw:  $SU(2)_L$  triplet ( $\Delta^{++}, \Delta^+, \Delta^0$ )
- Golden channel: Pair production [Akeroyd and Aoki, 2005, Fileviez Perez et al., 2008, del Aguila and Aguilar-Saavedra, 2009, Melfo et al., 2012]



- Striking signal with same-sign lepton pairs
- Tensions with naturalness requirement [Farina et al., 2013, Chabab et al., 2016, Haba et al., 2016]...  $\delta m_H < m_H \Rightarrow M_\Delta < \mathcal{O}(200) \text{ GeV}$



#### Searches for heavy leptons at the LHC

- Type III seesaw:  $SU(2)_L$  triplet  $(\Sigma^+, \Sigma^0, \Sigma^-)$
- Based on pair production  $(\Sigma^{\pm}\Sigma^{0}, \Sigma^{+}\Sigma^{-})$ [Franceschini et al., 2008, Arhrib et al., 2010, Ruiz, 2015] q'  $\Sigma^{+}$  q'  $\Sigma^{+}$  Z'  $Z'/\gamma/h$   $\bar{q}$   $\Sigma^{-}$

 Final states with multiple charged leptons (ATLAS: 2ℓ + 2j from W<sup>±</sup>, CMS: ≥ 3)

• Naturalness criterion leads to [Farina et al., 2013]  $\delta m_H < m_H \Rightarrow M_{\Sigma} < \mathcal{O}(1000) \text{ GeV}$ 



#### Type I and low-scale seesaw



• Taking  $M_R \gg m_D$  gives the "vanilla" type I seesaw

$$\mathbf{m}_{\nu} = -m_D^T M_R^{-1} m_D$$

• Cosmological limit:  $\Sigma m_{\nu_i} < 0.23 \text{ eV}$  [Planck, 2016]

$$\mathbf{m}_{\nu} \sim 0.1 \,\mathrm{eV} \Rightarrow \left| \begin{array}{c} Y_{\nu} \sim 1 \quad \mathrm{and} \quad M_R \sim 10^{14} \,\mathrm{GeV} \\ Y_{\nu} \sim 10^{-6} \,\mathrm{and} \quad M_R \sim 10^2 \,\,\mathrm{GeV} \end{array} \right|$$

Type I seesaw: m<sub>v</sub> suppressed by small active-sterile mixing

$$|V_{\ell N}| \sim \frac{m_D}{M_R} \sim 10^{-6} \sqrt{\frac{100 \,\mathrm{GeV}}{M_R}}$$

Cancellation in matrix product (from L nearly conserved [Kersten and Smirnov, 2007])
 → Low-scale seesaw with large active-sterile mixing, e.g.
 inverse seesaw [Mohapatra and Valle, 1986, Bernabéu et al., 1987]
 linear seesaw [Akhmedov et al., 1996, Barr, 2004, Malinsky et al., 2005]
 low-scale type I [Ilakovac and Pilaftsis, 1995] and others

#### LNV signals are suppressed

Cédric Weiland (IPPP Durham)

#### The inverse seesaw mechanism

- Lower seesaw scale from approximately conserved lepton number
- Add fermionic gauge singlets *ν<sub>R</sub>* (*L* = +1) and *X* (*L* = −1)

[Mohapatra and Valle, 1986]

۱

$$\mathcal{L}_{inverse} = -Y_{\nu}\overline{L}\widetilde{\phi}\nu_{R} - M_{R}\overline{\nu_{R}^{c}}X - \frac{1}{2}\mu_{X}\overline{X^{c}}X + \text{h.c.}$$
with  $m_{D} = Y_{\nu}\nu$ ,  $M^{\nu} = \begin{pmatrix} 0 & m_{D} & 0 \\ m_{D}^{T} & 0 & M_{R} \\ 0 & M_{R}^{T} & \mu_{X} \end{pmatrix}$ 
 $M_{\nu} \approx \frac{m_{D}^{2}}{M_{R}^{2}}\mu_{X}$ 
 $m_{\nu} \approx \frac{m_{D}^{2}}{M_{R}^{2}}\mu_{X}$ 
 $M_{N_{1},N_{2}} \approx \mp M_{R} + \frac{\mu_{X}}{2}$ 
 $2 \text{ scales: } \mu_{X} \text{ and } M_{R}$ 

- Decouple neutrino mass generation from active-sterile mixing
- Inverse seesaw: Y<sub>ν</sub> ~ O(1) and M<sub>R</sub> ~ 1 TeV
   ⇒ within reach of the LHC and low energy experiments

Cédric Weiland (IPPP Durham)

#### Low-scale seesaw signatures at colliders

#### Direct searches above m<sub>H</sub>

 LHC: LFV di-lepton + dijet [Arganda, Herrero, Marcano and CW, 2016] tri-lepton + missing E<sub>T</sub> [del Aguila and Aguilar-Saavedra, 2009,

Chen and Dev, 2012, Das and Okada, 2013, Bambhaniya et al., 2015]...

ILC/FCC-ee: single lepton + dijet

[Das and Okada, 2013, Banerjee et al., 2015, Antusch et al., 2016]

#### Direct searches below m<sub>H</sub>

• Higgs decays: invisible [Banerjee et al., 2013] visible

[Bhupal Dev et al., 2012, Bandyopadhyay et al., 2013, Cely et al., 2013, Das et al., 2017]

#### Displaced vertices

[Helo et al., 2014, Blondel et al., 2016, Dib and Kim, 2015, Gago et al., 2015, Antusch et al., 2016]

Image: A matrix

- E - F

#### Indirect searches

- EWPO [del Aguila et al., 2008, de Blas, 2013, Fernandez-Martinez et al., 2016]
- (semi)leptonic decays of mesons [Abada, Teixeira, Vicente and CW, 2014]
- charged lepton flavour violation [Bernabéu et al., 1987]...
- triple Higgs coupling [Baglio, CW, 2016, 2017]

#### Direct searches above $m_H$ : Production at the LHC



 Model files available for automated NLO calculation in phenomenological type I seesaw

[Degrande et al., 2016]

- Extension to CPV scenario and low-scale seesaw models is undergoing validation [R. Ruiz and CW]
- Gluon fusion channel dominates at low masses
- VBF dominates at high masses

[Dev et al., 2014, Alva et al., 2015]



Cédric Weiland (IPPP Durham)

#### Trilepton signatures at the LHC

• LNV same-sign dilepton is suppressed in low-scale seesaw models

#### Searches for LNC signatures of heavy (pseudo)-Dirac neutrinos are needed and well-motivated

• First channel:  $pp \rightarrow \ell^{\pm} \ell^{\mp} \ell^{\pm} \nu$  [del Aguila and Aguilar-Saavedra, 2009, Chen and Dev, 2012, Das and Okada, 2013, Bambhaniya et al., 2015]...



### LFV dilepton at the LHC

• Second channel:  $pp \rightarrow \ell_{\alpha}^+ \ell_{\beta}^- jj$  [Arganda, Herrero, Marcano and CW, 2016]





- Lower line: production only from Drell-Yan Shaded regions:  $W\gamma$  fusion added with  $p_T^{\text{max}} = 10, 20, 40 \text{ GeV}$  (darker to lighter)
- Up to  $\mathcal{O}(200)$  events, naively background free

### Production and decays at $e^+e^-$ colliders

- Many possible channels: *ℓνjj*, *ℓℓνν*, *ννjj*, *νννν* [Antusch et al., 2016]
- Most promising channel: ℓνjj

[Das and Okada, 2013, Banerjee et al., 2015, Antusch et al., 2016]



- LNC process: not suppressed in low-scale seesaw
- Process with the largest cross-section
- Can probe large mass range, up to  $\sim 0.95 \sqrt{s}$



#### Searches below $m_W$ : displaced vertices

- Very clean experimental signature
- Uses the large samples of *W*, *Z* and *H* available at colliders
- Can probe active-sterile mixing below  $10^{-5}$





#### Summary of direct searches

- LHC should be sensitive to heavy sterile neutrino with  $m_N \le 200 \text{ GeV}$ Future colliders could push direct searches to a few TeV[Golling et al., 2016]
- Important to consider LNC final state as well
- Displaced vertex searches are extremely powerful when below m<sub>W</sub>
- Lots of phenomenological activity:
  - (automated) NLO production cross-sections
  - New sensitivity studies and search strategies
  - New constraints set from LHC data
- Exclusion limits on  $\Delta^{++}$  for type II seesaw already in tension with naturalness considerations
- Exclusion limits on type III seesaw leptons pushed to  $\sim 800 \, \text{GeV}$  by CMS
- Indirect searches allow to push searches to the multi-TeV range



Image: Image:

## Electroweak precision observables

• Based on global fit to observables that include Z and  $W^{\pm}$  decays

[del Aguila et al., 2008, de Blas, 2013, Fernandez-Martinez et al., 2016]

- Kinematically inaccessible heavy *N* decreases *Z* and *W* decay widths
  - $\Rightarrow$  Limits independent of the heavy neutrino masses above  $m_Z$



[de Gouvêa and Kobach, 2016]

• Currently provide the strongest constraints on heavy neutrino mixing above  $m_H$ 

| mixing                                               | $2\sigma$ limit        |                                                             |
|------------------------------------------------------|------------------------|-------------------------------------------------------------|
| $egin{array}{c c c c c c c c c c c c c c c c c c c $ | 0.05<br>0.021<br>0.075 | [Fernandez-Martinez et al., 2016]                           |
| 1 ,111                                               |                        | < □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ > < Ξ < ੭ < ↔ |

#### Charged lepton flavour violation

- Sensitive to a new physics scale as large as  $\Lambda \sim 1000 \,\text{TeV}$
- ATLAS search for  $\tau \rightarrow 3\mu$ : Br < 3.76 × 10<sup>-7</sup> [ATLAS, 2016]
- ATLAS search for LFV Z decays:  $Br(Z \rightarrow \tau \mu) < 1.69 \times 10^{-5}$  [ATLAS, 2016]  $Br(Z \to e\mu) < 7.5 \times 10^{-7}$  [ATLAS, 2016]

in agreement with previous sensitivity studies [Davidson et al., 2012]

• Huge sensitivity improvement expected from future  $e^+e^-$  collider

[Abada et al., 2015b, Abada et al., 2015a, De Romeri et al., 2017]



### A new opportunity

• Huge effort to measure Higgs properties: mass, width, couplings

Use the Higgs sector to probe neutrino mass models

#### • $H\bar{\ell}_i\ell_j$ :

- Contribution negligible in the SM → evidence of new physics if observed
- Sensitive to off-diagonal Yukawa couplings Y<sub>ν</sub>
- Complementary to other LFV searches

#### • *HHH*:

- Reconstruct the scalar potential
  - → validate the Higgs mechanism as the origin of EWSB
- Sizeable SM 1-loop corrections (O(10%))
  - $\rightarrow$  Quantum corrections cannot be neglected
- One of the main motivations for future colliders
- Sensitive to diagonal Yukawa couplings Y<sub>v</sub>



## Lepton flavour violating Higgs decays I

#### • Arise at the one-loop level

[Arganda, Herrero, Marcano, CW, 2015]









(9)



(8)

- Formulas adapted from [Arganda et al., 2005]
- Diagrams 1, 8, 10 dominate at large  $M_R$
- Enhancement from: - $\mathcal{O}(1) Y_{\nu}$  couplings -TeV scale  $n_i$



(7)

(10)

## Lepton flavour violating Higgs decays II



- ${\rm Br}(H o au \mu) < 1.20\%$  [CMS-PAS-HIG-16-005]  ${\rm Br}(H o au \mu) < 1.43\%$  [ATLAS, EPJC77(2017)70]
- Dotted: excluded by  $\tau \rightarrow \mu \gamma$ Solid: allowed by LFV, LUV, etc
- $\operatorname{Br}^{\max}(H \to \mu \bar{\tau}) \sim 10^{-5}$
- Similarly,  $\operatorname{Br}^{\max}(H \to e\bar{\tau}) \sim 10^{-5}$
- Approximate formula for large Y<sub>v</sub>:

$$\mathrm{Br}_{H \to \mu \bar{\tau}}^{\mathrm{approx}} = 10^{-7} \frac{\mathrm{v}^4}{M_R^4} | (Y_\nu Y_\nu^\dagger)_{23} - 5.7 (Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger)_{23} |^2$$

• In a supersymmetric model,  $Br^{max}(H \rightarrow \mu \bar{\tau}) \sim 10^{-2}$  [Arganda, Herrero, Marcano, CW, 2016]  $\Rightarrow$  Within LHC reach

## The triple Higgs coupling

Scalar potential before EWSB:

$$V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$$



• After EWSB:  $m_H^2 = 2\mu^2$ ,  $v^2 = \mu^2/\lambda$ 

$$\phi = \begin{pmatrix} 0\\ \frac{v+H}{\sqrt{2}} \end{pmatrix} \rightarrow V(H) = \frac{1}{2}m_H^2 H^2 + \frac{1}{3!}\lambda_{HHH}H^3 + \frac{1}{4!}\lambda_{HHHH}H^2$$

and

$$\lambda_{HHH}^{0} = -\frac{3M_{H}^{2}}{v}, \quad \lambda_{HHHH}^{0} = -\frac{3M_{H}^{2}}{v^{2}}$$

rham

23/30

GdR Neutrino

### Experimental measurement of the HHH coupling







• Destructive interference between diagrams with and without  $\lambda_{HHH}$ 



Cédric Weiland (IPPP Durham)

GdR Neutrino 24 / 30

Using the Higgs sector

### Future sensitivities to the SM HHH coupling





- At hadron colliders
  - Production: gg dominates, VBF cleanest
  - HL-LHC:  $\sim 50\%$  for ATLAS or CMS [CMS-PAS-FTR-15-002] and [Baglio et al., 2013]  $\sim 35\%$  combined
  - FCC-hh: 8% per experiment with 3  ${
    m ab}^{-1}$  using only  $bar{b}\gamma\gamma$  [He et al., 2016]

 $\sim 5\%$  combining all channels

- At e<sup>+</sup>e<sup>-</sup> collider
  - Main production channels: Higgs-strahlung and VBF
  - ILC: 27% at 500 GeV with 4  $ab^{-1}$  [Fujii et al., 2015]

10% at 1 TeV with 5 ab<sup>-1</sup> [Fujii et al., 2015] (a = b = a = b)



### Beyond SM: simplified 3+1 model



- Impact of a new Dirac fermion coupled through the neutrino portal
- New 1-loop diagrams and new counterterms [Baglio and CW, 2016]
- Strongest experimental constraints on active-sterile mixing: EWPO

$$\begin{split} |V_{e4}| &\leqslant 0.041 \\ |V_{\mu4}| &\leqslant 0.030 \\ |V_{\tau4}| &\leqslant 0.087 \end{split}$$

• Loose (tight) perturbativity of  $\lambda_{HHH}$ :

$$\left(\frac{\max|(V^{\dagger}V)_{i4}|g_2 m_{n_4}}{2M_W}\right)^3 < 16\pi (2\pi)$$

• Width limit:  $\Gamma_{n_4} \leq 0.6 m_{n_4}$ 

[de Blas. 2013]



26/30

### Momentum dependence



•  $\Delta^{(1)}\lambda_{\rm HHH} = \frac{1}{\lambda^0} \left(\lambda_{\rm HHH}^{\rm 1r} - \lambda^0\right)$ 

• Assume 
$$V_{\tau 4} = 0.087$$
,  
 $V_{e 4} = V_{\mu 4} = 0$ 

 Deviation of the BSM correction with respect to the SM correction in the insert

•  $\max|(V^{\dagger}V)_{i4}|m_{n_4} = m_t$   $\rightarrow m_{n_4} = 2.7 \text{ TeV}$ tight perturbativity of  $\lambda_{HHH}$  bound:  $m_{n_4} = 7 \text{ TeV}$ width bound:  $m_{n_4} = 9 \text{ TeV}$ 

- Largest positive correction at  $q_H^* \simeq 500 \,\text{GeV}$ , heavy  $\nu$  decreases it
- Large negative correction at large  $q_H^*$ , heavy  $\nu$  increases it

### Results in 3+1 simplified model



- Red line: tight perturbativity of  $\lambda_{HHH}$  bound
- Heavy  $\nu$  effects at the limit of HL-LHC sensitivity (35%)
- Heavy  $\nu$  effects clearly visible at the ILC (10%) and FCC-hh (5%)
- Similar behaviour for active-sterile mixing  $V_{e4}$  and  $V_{u4}$



#### Results extended to the inverse seesaw



- Different calculation, with Majorana neutrinos [Baglio and CW, 2017]
- Diagonal  $Y_{\nu}$ : full calculation in black, approximate formula in green

$$\Delta_{\text{approx}}^{\text{BSM}} = \frac{(1 \text{ TeV})^2}{M_R^2} \left( 8.45 \operatorname{Tr}(Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger) - 0.145 \operatorname{Tr}(Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger) \right)$$

• Sensitive to heavy neutrino with mass of  $\mathcal{O}(10)$  TeV

#### Conclusion

- ν oscillations → New physics is needed to generate masses and mixing
- LHC experiments have an active search program for new particles coming from seesaw mechanisms
  - → Already put strong constraints on type II seesaw
- Both lepton number violating and lepton number conserving processes are important and should be considered
- Direct and indirect searches at colliders are complementary; applies as well to cosmological and precision observables
- Indirect searches at colliders can probe new regions above 10 TeV



#### Conclusion



Cédric Weiland (IPPP Durham)