GDR Neutrino meeting May 29-30 2017

May 29th, 2017

CUPID

Advanced bolometric technologies for double beta decay search in France

Andrea Giuliani

Outline

- > The challenging quest for neutrinoless double beta decay
- > The bolometric approach: from CUORE to CUPID
- > The ¹⁰⁰Mo way: LUMINEU \rightarrow CUPID-Mo
- > The ¹³⁰Te way: detection of Cherenkov light
- Development of new ideas: CROSS

Outline

- > The challenging quest for neutrinoless double beta decay
- > The bolometric approach: from CUORE to CUPID
- > The ¹⁰⁰Mo way: LUMINEU \rightarrow CUPID-Mo
- > The ¹³⁰Te way: detection of Cherenkov light
- Development of new ideas: CROSS

Neutrinoless double beta decay (0v2β): standard and non-standard mechanisms

 $0\nu 2\beta$ is a test for « creation of leptons »: $2n \rightarrow 2p + 2e^- \Rightarrow LNV$

This test is implemented in the nuclear matter: (A,Z) \rightarrow (A,Z+2) + 2e⁻

Energetically possible for **35 nuclei** Only a few are experimentally relevant

Standard mechanism: neutrino physics

 0v2β is mediated by light massive Majorana neutrinos (exactly those which oscillate)

Non-standard mechanism: BSM, LNV

Not necessarily neutrino physics

$\langle M_{\beta\beta} \rangle$ vs. lightest v mass

What we are looking for

The shape of the two-electron sum-energy spectrum enables to distinguish between the 0v (new physics) and the 2v decay modes

The signal is a peak (at the Q-value) over an almost flat background

Current-generation experiments

Strategic milestone

Strategic milestone

Request for the background index

Background index

b [counts/(keV kg y)]

defined as

number of background counts

detector (isotope) mass X live time X energy interval

around the region of interest

In the source=detector approach with high energy resolution technique $(\Delta E_{\rm FWHM} < 10 \ {\rm keV})$ zero background at the tonne scale means

 $b \leq 10^{-4}$ [counts/(keV kg y)]

Present record: GERDA (⁷⁶Ge) – b~ 7 x 10⁻⁴ counts/(keV kg y) – ΔE_{FWHM} ~ 3 keV

Outline

- > The challenging quest for neutrinoless double beta decay
- > The bolometric approach: from CUORE to CUPID
- > The ¹⁰⁰Mo way: LUMINEU \rightarrow CUPID-Mo
- ➢ The ¹³⁰Te way: detection of Cherenkov light
- Development of new ideas: CROSS

Bolometers in nutshell

Bolometric approach: the source is embedded in a crystal, which is cooled down to 10-20 mK and works as a **perfect calorimeter**

$\Delta T = E/C$

- High energy resolution (~ 5 keV FWHM)
- > ~ 0.1 0.5 kg source in each crystal \rightarrow arrays
- High efficiency (~ 80 90 %)
- > Cuoricino CUORE experiments \rightarrow crystals of TeO₂ (isotope ¹³⁰Te)
- Large flexibility in the detector material choice: ¹³⁰Te, and three golden isotopes (⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd) can be studied

CUORE: the largest bolometric search

Technique/location: natural 988 TeO₂ bolometers at 10-15 mK– LNGS (Italy) \rightarrow evolution of Cuoricino

Source: TeO₂ – 741 kg with natural tellurium - **9.5x10²⁶ nuclides of ¹³⁰Te** Sensitivity: **51 – 133 meV** (5 years) – approach closely inverted hierarchy region Timeline: first CUORE tower (CUORE-0) has completed successfully its physics run Full apparatus operational at end 2016 – **all 19 towers are now taking data**

Very high natural abundance of ¹³⁰Te: $34\% \Rightarrow$ competitive experiment without enrichment

Background beyond 2.6 MeV

Irreducible background due to alpha particles, emitted at the surfaces and energy-degraded

b ~ 10⁻² [counts/(keV kg y)] CUORE target CUORE will not be background free Current solution: scintillating / Cherenkov bolometers

Alpha / beta separation

Alphas emit a different amount of light with respect to beta/gamma of the same energy (normally lower $\rightarrow \alpha$ QF < 1, but not in all cases – ZnSe is an exception).

A scatter plot light vs. heat or a plot light-yield vs. heat) separates alphas from betas / gammas.

Of course, a bolometric light detector is needed, facing the main crystal

HEAT SIGNAL

CUPID

Follow-up to CUORE with background improved by a factor 100

- Reduce / control background from materials and from muon /neutrons
- Optimize the enrichment-purification-crystallization chain
- \succ Improve detector technology to get rid of α / surface background

CUPID goal

CUPID – pilot experiments

Follow-up to CUORE with background improved by a factor 100

- Reduce / control background from materials and from muon /neutrons
- Optimize the enrichment-purification-crystallization chain
- \succ Improve detector technology to get rid of α / surface background

CUPID – pilot experiments

Follow-up to CUORE with background improved by a factor 100

- Reduce / control background from materials and from muon /neutrons
- Optimize the enrichment-purification-crystallization chain
- \succ Improve detector technology to get rid of α / surface background

Outline

- > The challenging quest for neutrinoless double beta decay
- > The bolometric approach: from CUORE to CUPID
- > The ¹⁰⁰Mo way: LUMINEU → CUPID-Mo
- > The ¹³⁰Te way: detection of Cherenkov light
- Development of new ideas: CROSS

Some properties of ¹⁰⁰Mo

- > ¹⁰⁰Mo \rightarrow ¹⁰⁰Ru + 2e⁻
- \succ Q_{$\beta\beta$} = 3034 keV

enrichable by gas centrifugation

Caveats

T_{1/2}(2ν) = 7.1 × 10¹⁸ y – the fastest one in all 0ν2β candidates
 ²¹⁴Bi line at 3054 keV – B.R. 0.021 % - Compton edge 2818 keV

Useful Mo-based crystals

Crystals succesfully tested so far as scintillating bolometers:

 $CdMoO_4$ $PbMoO_4$ $SrMoO_4$ $CaMoO_4$ $ZnMoO_4$ Li_2MoO_4

AMoRE

Drawbacks:

- Necessity of ⁴⁸Ca depletion
 - Radiopurity (difficult to purify Ca from U, Th, Ra)

LUMINEU

Initial choice (2012): ZnMoO₄

First tests on large Li₂MoO₄ crystals: spring 2014

Astropart. Phys. 72, 38 (2016)

Selection of Li₂MoO₄ for a pilot experiment (March 2016)

- Better bolometric performance
- Easy crystallization / excellent quality
- Outstanding radiopurity

Caveats

- Hygroscopic material
- ⁴⁰K is natural contaminant
- Lower light yield (~0.8 keV/MeV)

Preparing a ¹⁰⁰Mo experiment

Funding / resources from

- ANR (France) main fund provider (LUMINEU: 2012-2017)
- CEA-Saclay substantial funds / PhD
- CSNSM direction funds for crystals (« AP interne »)
- EDELWEISS underground facility, electronics & DAQ
- IN2P3 dedicated personnel
- KINR Kiev radiopure scintillator know-how, simulation, enriched ¹⁰⁰Mo
- ITEP Moscow enriched ¹⁰⁰Mo
- NIIC Novosibirsk crystals
- INFN / LUCIFER (LNGS / Rome) underground facility and manpower for R&D

Extension of the Mo collaboration: CUPID-Mo

New participants

LAL – Orsay MIT UCB and LBL USA MIT UCLA Fudan Shanghai USTC Hefei China **Strong interest in China** – large CUPID group in formation

 Project for a "parallel CUPID" at JinPing laboratory
 International workshop on neutrinoless double beta decay physics June 28-30, 2017, Fudan University, Shanghai, China. http://www.physics-conference.xyz/

Li₂MoO₄: purification and crystallization

From 2013 to 2016, a series of important milestones were achieved:

- Mo purification / crystallization protocol (NIIC, Novosibirsk, Russia) (Mo irrecoverable losses < 4%)</p>
- Selection of the appropriate Li₂CO₃ powder for compound formation
- Successful program to control internal content of ⁴⁰K [(from ~60 mBq/kg to < 5 mBq/kg)</p>

 \rightarrow Random coincidences: $2\nu 2\beta + {}^{40}K << 2\nu 2\beta + 2\nu 2\beta$

Efficient use of existing ~10 kg of ¹⁰⁰Mo (~9 kg to ITEP-Moscow and ~1 kg to KINR-Kiev) (MoU among IN2P3 / INFN / ITEP – February 2015)

Natural isotopic abundance: 9.7%

NIM A 729, 856 (2013) JINST 9, P06004 (2014) EPJC 74, 3133 (2014) JINST 10, P05007 (2015) http://arxiv.org/abs/1704.01758 (submitted to EPJC)

2017

Li₂¹⁰⁰MoO₄ scintillating bolometers: a mature technology

Multiple tests with natural and enriched crystals (2014-2017) in LSM and LNGS with outstanding results in terms of: http://arxiv.org/abs/1704.01758

Reproducibility \rightarrow Energy resolution α/β separation power \rightarrow > 99.9 % \rightarrow Internal radiopurity

excellent performance uniformity ~ 4-5 keV FWHM in Rol

- < 5 μ Bq/kg in ²³²Th, ²³⁸U; < 5 mBq/kg in ⁴⁰K

Compatible with $b \le 10^{-4}$ [counts/(keV kg y)]

Reproducibility

Array of four enriched detectors, M ~ 210 g, LSM (EDELWEISS setup)

Energy resolution

Array of four enriched detectors, M ~ 210 g, LSM (EDELWEISS setup)

α rejection and internal purity

Using light yield and a detector with a smeared α source: 99.9% α rejection with 99.7 % β acceptance

Two-neutrino double beta decay

$$T_{1/2} = [6.90 \pm 0.15 (\text{stat.}) \pm 0.42 (\text{syst.})] \times 10^{18} \text{ yr} \quad \text{LUMINEU, 0.03 kg×yr}$$
$$[7.11 \pm 0.02 (\text{stat.}) \pm 0.54 (\text{syst.})] \times 10^{18} \text{ yr} \quad \text{NEMO-3, 7.37 kg×yr}$$

Good physics results can be achieved even with one LUMINEU detector

Next pilot experiments

CUPID-0/Mo Phase I (20 crystals):

- ➤ 20 ¹⁰⁰Mo-enriched (97%) Li₂MoO₄ (Ø44×45 mm, 0.21 kg each; 4.18 kg total)
 ⇒ 2.34 kg of ¹⁰⁰Mo (1.37×10^{25 100}Mo nuclei)
- > 20 Ge light detectors (Ø44×0.175 mm)+SiO
- EDELWEISS set-up @ LSM (France)

START DATA TAKING: December 2017

CUPID-0/Mo Phase II (20+20 - or more - crystals):

- At least additional 20 Li₂¹⁰⁰MoO₄
- > CUPID-0 set-up @ LNGS (Italy)

(under discussion)

Sensitivity of CUPID-Mo

In calculating the sensitivity (90% C.L.), we will assume:

- > $b = 1 \times 10^{-3}$ counts/(keV kg y)
- > 8 keV energy window
- > 78% efficiency

Configuration	Half life limit [90% c.l.]	M _{ββ} [meV]
(1) 20 crystal [20×0.5 cr.×y]	$1.4 imes 10^{24}$	240 – 670
(2) 20 crystal [20×1.5 cr.×y]	4.2×10^{24}	140 - 390
(3) 40 crystal [40×3 cr.×y]	$1.7 imes 10^{25}$	70 – 200

First two options sensitivities substantially unchanged by $b = 1 \times 10^{-2}$ counts/(keV kg y)

$\langle M_{\beta\beta} \rangle$ vs. lightest v mass

Outline

- > The challenging quest for neutrinoless double beta decay
- > The bolometric approach: from CUORE to CUPID
- > The ¹⁰⁰Mo way: LUMINEU → CUPID-Mo
- > The ¹³⁰Te way: detection of Cherenkov light
- Development of new ideas: CROSS

α/β separation in TeO₂

TeO₂ is a very weak scintillator \rightarrow Detection of Cherenkov light is needed to achieve α rejection

Development of a special light detector at CSNSM based on EDELWEISS Al electrode technology \rightarrow Neganov-Luke effect

The application of an electric field boosts the phonon signal.

99.9% α rejection with **96.3 %** β acceptance

The best result ever obtained with a CUORE-size crystal, compliant with CUPID goal

Outline

- > The challenging quest for neutrinoless double beta decay
- > The bolometric approach: from CUORE to CUPID
- > The ¹⁰⁰Mo way: LUMINEU → CUPID-Mo
- ➢ The ¹³⁰Te way: detection of Cherenkov light
- Development of new ideas: CROSS

Current role of surface radioactivity

CUORE background model

Eliminating surface α 's is enough?

The residual background after alpha rejection comes mainly from **high Q-value beta emitters from surface contamination** ²²⁶Ra – generates ²¹⁴Bi – 3.27 MeV endpoint ²²⁸Th – generates ²⁰⁸Tl – 5.00 MeV endpoint

Eliminating surface α 's is enough?

The residual background after alpha rejection comes mainly from **high Q-value beta emitters from surface contamination** ²²⁶Ra – generates ²¹⁴Bi – 3.27 MeV endpoint ²²⁸Th – generates ²⁰⁸Tl – 5.00 MeV endpoint

CROSS: new advancement opportunity

erc

ERC advanced grant CROSS

Cryogenic Rare-event Observatory with Surface Sensitivity

CROSS is a bolometric experiment to search for 0v-DBD

- Core of the project (high risk / high gain)
 Background rejection through pulse shape discrimination
 - Surface sensitivity through superconductive AI film coating
 - Fast NbSi high-impedance TES to replace / complement NTDs
 get rid of light detectors
- Complete crystallization of available ¹⁰⁰Mo (10 kg) in Li₂MoO₄ elements
- Purchase / crystallize ¹³⁰Te (up to 17 kg) in TeO₂ elements
- Run demonstrator in a dedicated cryostat (LSC Spain)

~200 kg of ¹⁰⁰Mo in ~1200 Li_2MoO_4 crystals

The struggle against background

CUPID projects with French leadership

CLYMENE ANK Li₂MoO₄ crystals in France

CUPID-Mo 📫

Scintillating bolometers

- Favored isotope: ¹⁰⁰Mo
- Keep technology ready for ¹¹⁶Cd

EPJ C 76, 487(2016)

CYGNUS Paris Sud chair

CUPID-TeO₂

High-performance light detectors

- Luke effect *Phys. Lett. B* 767, 321 (2017)
- MKIDs

CUPID-CROSS Surface sensitivity

Conclusions

- Neutrinoless double beta decay is a key process in particle physics, neutrino physics and cosmology: innovation is mandatory to fully explore the inverted ordering region of neutrino masses and go beyond
- ➤ The bolometric approach is extremely competitive (CUORE), and its sensitivity can be substantially improved with new technologies → CUPID
- CUPID-Mo, an evolution of LUMINEU, is a competitive project at the international level, in excellent position for the CUPID technology selection
- TeO₂, the compound of CUORE, is still in the game for CUPID thanks to ultrasensitive large-surface light detectors developed in France
- The project CROSS develops new ideas for background rejection, based on pulse shape discrimination, capable of providing a decisive step forward of the bolometric technology