

T2K-2

GDR Neutrino – May 2017, Paris

S.Bolognesi (CEA/IRFU)

T2K: Tokai (JPARC) to Kamioka (SuperKamiokande)

Long baseline (295 km) neutrino oscillation experiment with off-axis technique:

T2K beam

T2K oscillation analysis

• ν -mode: 7.48×10²⁰ POT

 $\overline{\nu}$ -mode: 7.47×10²⁰ POT

First 90% limits on δ_{CP} !!

Growing statistics

Big improvement in \delta_{CP} limits from data in antineutrino mode

The other oscillation parameters $(\theta_{23}, |\Delta m^2_{32}|)$: mostly from v_{μ} and v_{μ} disappearance

7

- $\sin^2\theta_{23}$ enhance/suppress both v_{μ} and \overline{v}_{μ} disappearance
- $|\Delta m^2_{32}|$ regulate the position of the oscillation maximum as a function of the energy

Prospects for future

NOVA – T2K combination with final dataset (~2021):

Mass Hierarchy

- NOVA can reach 3σ on MH for favorable δ_{CP} values
- Various other projects on-going aiming to 3σ on MH: JUNO, ORCA, PINGU
- Matter effects is a relatively small effect at T2K: ~10% versus the dominant effect of δ_{CP} (30%)
 - \rightarrow small sensitivity to MH

L (km)

Prob (numu -> nue)

CP sensitivity at T2K

- At T2K very clean δ_{cP} measurement:
 - small δ_{CP} -MH degeneracy
 - very large far detector (SuperKamiokande \rightarrow Hyperkamiokande) with narrow beam \rightarrow mostly a counting experiment $\nu_e vs \nu_e$

at the end of T2K (7.8x10²¹ POT in 2021) we will still be limited by statistics and not by systematics

• $5\sigma \delta_{CP}$ measurement at DUNE/HK after 2030 \rightarrow a lot of room for interesting results before that and need to keep physics output and analysis know-how **before DUNE/HK** start taking data

■ Request for new run of T2K beyond design statistics (7.8x10²¹ POT by) → 20x10²¹ POT by 2026:

JPARC Main Ring upgrade approved: beam power up to 1.3MW in view of HyperKamiokande

today: 32 v_e event, 4 $\overline{v_e}$ events T2K-2: 400 v_e events, 100 $\overline{v_e}$ events

→ good chances to observe **CP violation at > 3** σ by 2026 for a sizeable fraction of δ_{CP} values

Systematics and near detector

In T2K-2 the systematics starts to be a limiting factor for sensitivity

 Crucial role of near detector: example from v_e appearance at T2K

Systematics $\delta N_e/N_e$	w/o ND280 constraint	w/ ND280 constraint
Flux	8.94% —	▶ 3.64%
Cross Section	7.17% ———	4.13%
Flux + Cross Section	11.5% ———	▶ 2.88%
Final State/Secondary interaction Super-K	2.50%	2.50%
Super-K detector	2.39%	2.39%
Total	11.9%	→ 5.41%

Neutrino-nucleus interaction

• Xsec measured with limited precision on free nucleons in old bubble chamber experiments. In modern experiment v interacts with target detectors of carbon, water or argon \rightarrow large nuclear effects not well known

ND280 Upgrade for T2K Phase II

- T2K-II will require a 2% precision on the expected number of events at SK (~5% today) to match the 400 v_e appearance events
 - \rightarrow We are currently studying an upgrade of the near detector ND280 to improve the constraints on the systematics

 \rightarrow better understanding of neutrino-nucleus interactions crucial also for next-generation of experiments (DUNE/HK)

Physics drivers

• Keep the very good e/μ separation

Improving the angular • acceptance over the full polar angle and

true p [GeV/c]

Lower threshold for • low momentum particles (muons, protons, pions)

Possible configuration

- Add new target+TPCs with 'horizontal' geometry
- Add Time Of Flight detectors to identify track direction
- Surrounded by same ECAL and magnet as ND280

New horizontal TPCs to enlarge high angle acceptance

- Development of resistive bulk Micromegas for the TPC read-out (CEA)
- \rightarrow improve spatial resolution and/or decrease the number of channels
- Front and back-end TPC electronics (CEA and LPNHE)

R&D for TPC

 Resistive foil with sputtered Diamond-like carbon as used for ILC TPC R&D and ATLAS New Small Wheels

 Light field cage to minimize the background due to interactions on passive material (similar to Aleph/ILC field cage)

Possible design for new target

First prototype already installed at T2K on-axis and taking data

Further R&D

 More sophisticated target under study: fully 3D scintillator

ND280 upgrade: status

- 3 workshops with large participation (2 at CERN and 1 in Japan)
 Linked with work on High Pressure TPC to measure neutrino cross-section and as possible DUNE near detector
- Expression of Interest well received by CERN (SPSC-EOI-015) signed by ~190 physicists from Bulgaria, Canada, France, Italy, Japan, Germany, Poland, Spain, Sweden, Switzerland, UK, USA, CERN
- \rightarrow full proposal in Fall
- Important role of French T2K groups (CEA, LLR, LPNHE) New collaborators welcome!!!

Summary

First 90% CL exclusion of CP conservation: hint for maximal v-v asymmetry

T2K $\delta_{_{CP}}$ measurement will be until the end (2021) limited by statistics

- Request for T2K-2: 2.5 larger statistics by 2026 \rightarrow 3 σ evidence for CP violation possible
 - JPARC Main Ring upgrade
 - Upgrade of the near detector to minimize the systematics
- Precise measurements of v-nucleus xsec (and better theoretical nuclear modeling) thanks to T2K-2 will be also crucial for the success of DUNE and HyperKamiokande

-21nL

20

15

10

T2K Run1-7c preliminary

Normal Hierarchy
Inverted Hierarchy

BACKUP slides

$\mathsf{NOVA}\,\delta_{\mathsf{CP}}$

NOVA has taken 6.05×10^{20} POT in v mode (no \overline{v} data yet):

NOVA in agreement with T2K: favours maximal CPV and slightly favour NH

$$\delta_{_{\rm CP}}$$
 and MH mainly from $\nu_{_{\mu}} \rightarrow \nu_{_{\rm e}}$ / $\nu_{_{\mu}} \rightarrow \nu_{_{\rm e}}$

$$\delta_{_{\rm CP}}$$
 and MH mainly from $\nu_{_{\mu}} \rightarrow \nu_{_{e}}$ / $\nu_{_{\mu}} \rightarrow \nu_{_{e}}$

Results favour maximal CP violation (and slightly favour NH)

Non standard scenarios

• CPT violation in T2K by comparing disappearance $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\bar{\nu_{\mu}} \rightarrow \bar{\nu_{\mu}}$

- Limits on non-standard neutrino interactions from MINOS+
- → important to constrain to avoid degeneracies and biases with future precise δ_{CP} measurement!

 Sterile neutrinos: combination of MINOS, DayaBay and Bugey

S.Bolognesi – Apero Sept 2016 – slide 16

NOVA – T2K comparison: nue appearance

- Observe **33** events passing ν_e selection
- On 8.2 background

NOVA – T2K comparison: v_{μ} disappearance

	NOVA v	Τ2Κ ν	T2K $\overline{\nu}$
Expected w/o oscillations	473 ± 30	522 ± 26	185 ± 10
Best fit	82	136	64
Observed	78	135	66

No clear suspect \rightarrow T2K-NOVA difference is maybe just a statistical fluctuation ?

T2K systematics uncertainties (joint oscillation analysis)

Fractional error on the number of expected events at SK with and without ND280

	$ u_{\mu} \text{ sample} $ 1R _{μ} FHC	v_{e} sample 1R _e FHC	$ar{ u}_{\mu}$ sample 1R _{μ} RHC	$\overline{\nu}_{e}$ sample 1R _e RHC
ν flux w/o ND280	7,6%	8,9%	7,1%	8,0%
u flux with ND280	3,6%	3,6%	3,8%	3,8%
ν cross-section w/o ND280	7,7%	7,2%	9,3%	10,1%
u cross-section with ND280	4,1%	5,1%	4,2%	5,5%
ν flux+cross-section	2,9%	4,2%	3,4%	4,6%
Final or secondary hadron int.	1,5%	2,5%	2,1%	2,5%
Super-K detector	3,9%	2,4%	3,3%	3,1%
Total w/o ND280	12,0%	11,9%	12,5%	13,7%
Total with ND280	5,0%	5,4%	5,2%	6,2%

T2K systematics uncertainties (joint oscillation analysis)

Fractional error on the number of expected events at SK

	ν_{μ} sample	v_{e} sample	$\overline{\nu}_{\mu}$ sample	$\overline{\nu}_{e}$ sample	1R _e
	$1R_{\mu}$ FHC	$1R_e FHC$	$1R_{\mu}RHC$	$1R_e RHC$	FHC/RHC
ν flux+cross-section constrained by ND280	2,8%	2,9%	3,3%	3,2%	2,2%
$ u_{\rm e}/ u_{\mu} $ and $ \bar{ u}_{\rm e}/ \bar{ u}_{\mu} $ cross-sections	0,0%	2,7%	0,0%	1,5%	3,1%
ΝСγ	0,0%	1,4%	0,0%	3,0%	1,5%
NC other	0,8%	0,2%	0,8%	0,3%	0,2%
Final or secondary hadron int.	1,5%	2,5%	2,1%	2,5%	3,6%
Super-K detector	3,9%	2,4%	3,3%	3,1%	1,6%
Total	5,0%	5,4%	5,2%	6,2%	5,8%

How does it work?

SUPERKAMIOKANDE

<u>clear ring</u>

fuzzy ring

- Lepton momentum and angle \rightarrow neutrino energy
- Backgrounds:
- Select events with no outgoing pions (1 ring) (Quasi-Elastic interactions) vn → I⁻p (outgoing nucleon undetected)
- · Outer volume with outward facing PMT to veto external background
- **<u>PMT timing</u>** to select beam bunches and reconstruct vertex position in fiducial volume
 - intrinsic v component in the beam

v interactions from beam:

- pions: $\underline{\pi}^{\underline{+}\underline{-}}$ undetected and $\pi^0 \rightarrow \gamma\gamma \rightarrow e$ -like ring + $\underline{\gamma}$ undetected
- $\overline{\nu}$ oscillations: intrinsic ν component in the beam

No magnetic field \rightarrow no charge measurement ($\nu/\overline{\nu}$) <u>**R&D: Gd doping**</u> to tag neutrons to distinguish: $\nu n \rightarrow l^{-}p$ from νp -> l⁺n

HYPERKAMIOKANDE:

Working to improve PMTs and on Gd doping. Electronics and calibration system very similar to SuperK

From SuperK to HyperK

Tanks and PMT design under discussion:

- minimize risk due to pressure on PMTs (avoid cascade implosion as in SK 2001 incident)
- minimize cost (volume vs #PMTs)
- need PMT R&D (next slide)

R&D on **PMTs**

 Optimization should include pressure resistance

possible to put protective cover \rightarrow need precise control of glass quality

Response to single photoelectron:

Integrated system of inner and outer PMTs under study (solve problems of pressure and in-water electronics)

3' PMTs for inner detector

large PMT for outer detector veto

Gadolinium doping

- $\overline{\mathbf{vp}} \rightarrow \mathbf{l}^+\mathbf{n} \rightarrow \mathbf{n}$ get captured in Gd with emission of few $\gamma \sim 8$ MeV \rightarrow for beam neutrino physics: $\mathbf{v} \ \mathbf{vs} \ \mathbf{v}$ separation, but also useful to enhance sensitivity to SuperNova v and proton decay
- R&D studies (eg, WATCHMAN) as reactor monitoring
- EGADS: 200 ton scale model of SuperK fully operative in Kamioka mine

Neutron capture time tested with Am/Be source: data-MC perfect agreement

All the trick is about keeping water pure and transparent without loosing Gd (dedicated filtration system)

• SuperKamiokande will run with loaded Gd in next years!

Go

Liquid Argon technology

Ionizing particle in LAr \rightarrow 2 measurements:

- charge from ionization
 - \rightarrow tracking and calorimetry
- scintillation light \rightarrow trigger and t₀ (drift time \rightarrow third coordinate for non-beam events)

- μ track momentum from range (or from multiple scattering if not contained)
- PID from dE/dx
- Very good electron/ γ ID and π^0 reconstruction
- Calorimetric energy from total collected charge (+ light)

DUNE: staged approach with 4 modules of ~10kTon fiducial mass each

Many other challenges

• scintillation light: single phase: first test of wavelenght shifting bars to SiPM integrated with a TPC

double phase: standard PMTs (with coating),

• high voltage on large surfaces: cathode-anode $\Delta V \sim$ few hundreds V (double phase)

~180 V (single phase)

- large number of channels
 - \rightarrow electronics in gas accessible only in double phase design
 - \rightarrow calibration and uniformity

(eg: flattening of cathode and of charge readout plane,

E field between different modules of charge readout ...)

• software for automatic reconstruction

huge amount of info (efficient zero suppression)

LAr TPC as calorimeter

fully omogeneus with very low threshold

very good resolution and detailed tracking inside shower \rightarrow potential to improve shower models!

ICARUS:

- > Low energy electrons:
- $\sigma(E)/E = 11\%/\sqrt{E(MeV)}+2\%$
- > Electromagnetic showers: $\sigma(E)/E = 3\%/\sqrt{E(GeV)}$
- Hadron shower (pure LAr): σ(E)/E ≈ 30%/√E(GeV)

Water Cherenkov vs Liquid Argon

- Hyperkamiokande much more sensitive to CP violation while DUNE much more sensitive to Mass Herarchy (see backup).
 But sensitivities depend on assumed beam power, detector mass and on baseline.
- Comparison of technologies:

WATER CHERENKOV

- well known and solid technology
- very large mass (~MTon)
- info only about particles above Cherenkov threshold

 \rightarrow no need of precise E_v shape: mainly a counting experiment

LIQUID ARGON

- successfull R&D → first very large scale realization
- size limited by drift length (~40KTon)
- full reconstruction of tracks and showers down to very low threshold, very good particle ID

 \rightarrow precise E $_{_{\!\rm V}}$ shape accessible and needed for good sensitivity

 \rightarrow need to reach very good control on detector calibration/uniformity and on neutrino interaction modelling

Sensitivities CP violation sensitivity **DUNE CPV Sensitivity** Normal Hierarchy $\sin^2 2\theta_{13} = 0.085$ $\sin^2 \theta_{23} = 0.45$ **Fractional region of** $\delta(\%)$ for CPV (sin $\delta \neq 0$) > 3,5 σ Assuming 1MW beam % of covered $\delta_{\rm CP}$ range $\frac{100}{90}$ S coverage for nominal beam power): δ (%) $\sigma = \sqrt{\Delta \chi^2}$ HK 3 years (1MTon): CPV **80** CPV > 3σ (5σ) for 76%(58%) of δ measured at 3s(5s) for 70 Fraction of 60 75% (60%) of dCP values 50 40 σ 30 Nominal beam power **-3** σ DUNE 10 years (40 kTon): 20 10 CPV measured at 3s (5s) 200 400 600 800 1000 1200 1400 Exposure (kt-MW-years) 8 10 for >50% (~25%) of dCP Integrated beam power (MW 10⁻⁷ sec) values Mass hierarchy sensitivity **DUNE MH Sensitivity DUNE 10** Normal Hierarchy 35 sin²20,, = 0.085 vears: 50 $\sin^2 \theta_{23} = 0.45$ $\sin^2\theta_{23}=0.6$ definitive 30 HK 10 years: 45 determination wrong MH excluded 40 % ₀_{CP}=40° of unknown $\delta_{\rm CP}$ of MH 35È at 3s [₹]χ 20 Hierarchy 52 Normal hierarchy 0.5 15 10 15 0.4 range 3σ 10 **5**E 0 200 400 600 800 1000 1200 2 10 Exposure (kt-MW-years)

livetime [years]

Moving to larger energies ...

Moving to larger energies ...

Moving to larger energies ...

