

Status of the STEREO experiment : search for a sterile neutrino

Thomas Salagnac on behalf of the STEREO collaboration

LPSC, Grenoble

GDR Neutrino 2017

Short distance neutrino anomalies

Possible explanations : sterile neutrino vs bias in flux prediction

New ν flavor inducing short distance oscillation : a light sterile neutrino

$$egin{split} & P_{e
ightarrow e} \simeq 1 - \sin^2\left(2 heta_{ee}
ight) \ & imes \sin^2\left(1,27 \cdot rac{\mathbf{\Delta}m^2_{\mathbf{41}}[eV^2] \cdot L[m]}{E_{ar{
u_e}}[MeV]}
ight) \end{split}$$

arXiv:1704.01082, The Daya Bay Collaboration

Bias in the predicted reactor $\overline{
u}_e$ fluxes :

- Spectral distortion (bump around 5 MeV) in θ_{13} experiments shows that $\overline{\nu}_e$ spectra are not perfectly predicted
- Discrepancy between observed and predicted ²³⁵U yield by Daya Bay suggests ²³⁵U may be the primary contributor of the RAA

arXiv:1703.00860, S.Gariazzo et al.

STEREO experiment

1st Objective : Probe sterile neutrino parameter space at the ILL research reactor (Grenoble)

• Measure the distortion of the $\overline{\nu}_e$ spectrum between cells, at [9-11] m from ILL core

2nd Objective : Improve reactor $\overline{\nu}_e$ spectrum understanding

• Measure a quasi-pure $^{235}\mathrm{U}~\overline{\nu}_{e}$ spectrum

Delayed signal - n-capture on gadolinium (Gd), induce ${\sim}3\,\gamma$ emission for a total of 8 MeV, few $\mu {\rm s}$ after prompt signal

STEREO site at ILL

Reactor :

- $\bullet\,$ Nominal reactor power $\sim\,57\,\,\text{MW}$
- Highly ²³⁵U-enriched fuel (93%)
- Compact core (diameter = 37 cm) prevent oscillation signal being washed out

Detector position :

- Stereo detector covers $\left[8.9-11.1\right] \mathrm{m}$ from core
- Overburden of water channel (15 m.w.e.) \Rightarrow shielding against muons

HQ. VCs 110 D19 IN20

Drawbacks :

• High level of background (n, γ) from neighbouring experiments and reactor

Two sub-volumes : filled with liquid scintillator

Target (for IBD) segmented in 6 identical cells

Gamma-catcher to collect escaping gamma, improve efficiency and energy resolution

• 48 PMTs : 4 PMTs per Target cell and 4 or 8 PMTs per Gamma-catcher cell

Shielding

Shielded enclosure :

- 6 tons of borated polyethylene
- 65 tons of lead
- B₄C sheets all around the detector structure
- Magnetic shielding (soft iron + μ Metal)

Support structure

Lead

Shielding

Shielded enclosure :

- 6 tons of borated polyethylene
- 65 tons of lead
- B₄C sheets all around the detector structure
- Magnetic shielding (soft iron + µMetal)

Detector Borated polyethylene

Calibration

Calibration sources :

- Gamma sources (⁵⁴Mn, ⁶⁰Co, ...) : energy scale (quenching curve)
- Neutron sources (AmBe, ²⁵²Cf) : neutron efficiency, PSD characterization

Calibration systems :

- Tubes to deploy sources inside 3 of the 6 target cells at different heights
- Pantograph to deploy source all around the detector at different heights
- Rail to deploy source underneath

Regular calibration runs : calibration are done regularly to follow coefficient evolutions

- $\bullet~\times 3$ per week : internal calibration with ^{54}Mn
- \bullet Once per week : external calibration with γ and n sources
- every 3 weeks : full calibration campaign with all sources

Between calibrations : LED light injected in the detector at different heights (every hour)

Status

STEREO timeline :

- Spring-Fall 2016 : Mounting and installation of the STEREO detector and its shielding
- 9th November 2016 : ASN approval \Rightarrow detector filling and commissioning (2 weeks)
- Winter 2016-2017 : Data taking of 75 days reactor ON + 28 days reactor OFF
- March 2017 : Reactor stopped on March 8th (up to October 2017)
 ⇒ End of the first data acquisition phase on March 12th
- March-September 2017 : STEREO retracted for reactor works, used for detector maintenance

Analysis of first data

- 95% neutrino data, 5% calibration, negligible losses
- No acquisition dead time with a trigger rate up to few kHz → low trigger threshold (250 keV)
- Light yield as expected (\sim 300 PEs/MeV)
- Homogeneity as expected (small top/bottom effect)

Problem encountered :

- Buffer oil leaking in one TG and one GC cell
 ⇒ halved light collection in these cells
- Liquid scintillator seeped into the air gap of cell walls
- Cross talk (light leaks) between cells larger than expected, need to deploy a correction procedure

Light leaks

- Light leaks measured and monitored in 2 ways :
 - using vertical muons
 - using ⁵⁴Mn radioactive source
- Few percent [1%-15%] of light leaks between cells (cell with buffer leak \sim 30%)
- Light leaks vary with time : buffer leaking, LS slowly seep into the air gap between acrylic plates

 \Rightarrow Impact on the collected light in cells, need to take into account light leaks in the energy reconstruction

Light leaks from Cell1 To other cells

• The charge collected in a cell i is proportional to the light produced in that cell and the light leaks from neighbouring cells j :

$$Q_i = \sum_i E_j^{dep} \times C_j \times L_{ij} = \sum_i E_j^{dep} M_{ij}$$

- C_j are the conversion coefficients (PEs/MeV) and L_{ji} are the light leaks. Both are obtained from calibration data as M_{ji}
- Inverting M_{ji} and solving the equation gives the final E_{dep} as a sum of contributions of all cells

Benefits of E_{dep} :

- Stabilise detector response over time
- Direct comparison Data vs MC
- Use topological cuts (barycenter, dispersion, ...)

IBD candidate search

- **IBD candidates (pairs)** : Search for a coincidence between two signals (prompt, delayed) in a 70µs window
 - ▶ Prompt (e^+ thermalization + annihilation) : 2 MeV < E^{dep} < 8 MeV, E^{dep}_{GC} < 1.1 MeV
 - ▶ Delayed (*n*-capture) : $5 \text{ MeV} < E^{dep} < 10 \text{ MeV}, E^{dep}_{TG} > 1 \text{ MeV}$

• Accidentals :

- estimated online by shifting the delayed window from 2 ms (repeat n-times to decrease the statistical uncertainty)
- contribution subtracted to obtain only the correlated contribution

• Correlated background :

Cosmic origin : measured with reactor OFF, then subtraction ON-OFF

Correlated background

 μ -decay : μ -stop (prompt) and Michel-e (delayed)

• μ -stops that mimic IBD occur at the cell top near PMTs

 \Rightarrow reject events with strong asymmetry of the collected light in the vertex cell

Multi-neutrons : n-captures and p-recoils

• Isolation cut : no event above 1.8 MeV (muons excluded) in 100 μs before and after a pair

 μ -induced background : μ -decay, fast-n, multi-n, ...

• μ -veto cut : 100 μ s veto after a muon

First results : IBD candidates

IBD candidate rates :

corrected from dead time (hard + soft) and atmospheric pressure

- Low accidental background level mainly from reactor and neighbouring experiment
- No evidence for fast neutron from reactor inducing pair
 ⇒ Shielding meets the specifications
- Remaining background is induced by cosmic rays

Achievements :

• STEREO detector collected more than 100 days of data :

75 days reactor ON + 28 days reactor OFF

- Light yield in agreement with expectation
- Working at low threshold with very small deadtime
- Evolution of detector response required regular calibration and development of dedicated tools to account for cross-talk
- $\bullet~S/B$ ratio close to specifications

Next steps :

- \bullet Work in progress to refine topological cuts and increase S/B
- Currently re-assembling the detector during long reactor shutdown (ends in October 2017)
- Expect more than 100 days of reactor ON by the end of 2017
- $\bullet\,$ Plus ${\sim}150$ additional days of reactor ON in 2018

Thanks for your attention !

