The infancy of supernova remnants: evolving a supernova into its remant in 3D

Michael Gabler E. Müller, H.-T. Janka, A. Wongwathanarat

European Research Council Established by the European Commission

Supporting top researchers from anywhere in the world

IAUS 331 - La Réunion - Feb 21, 2017

SNR Observations - Cas A

The observation of asymmetries in the supernova ejecta

- High ratio of Ti44/Ni56 emission (Nagataki et al. 1998)
- Optical light echoes (Rest et al. 2011)
- Jet-like features in the X-ray and optical ejecta (Hwang et al. 2004, Fesen et al. 2006)

- Spatially resolved X-ray emission (Grefenstette et al. 2014, Milisavljevic et al. 2015)
 - Spatial distribution of Ti44 (blue)
 - Si/Mg (green)
 - Fe (red)

Bubbles, Cavities, Protrusions ('jets')

- DeLaney et al. 2010
- Infrared [Ar II] (red), high infrared [Ne II]/[Ar II] ratio (blue), X-ray Si XIII (black), X-ray Fe-K (green), outer optical ejecta (yellow), fiducial reverse shock (sphere), and CCO (cross)

- Milisavljevic & Fesen (2015)
- Doppler reconstruction of [S III] emission
- Color coding: velocity

IAUS 331 La Réunior

Piston vs. Ni-bubble

DeLaney et al. 2010

- Piston with high velocity creates regions with different composition at a given radius
- Reverse shock heats part of Fe that is enclosed by rings of Ar/Si and Ne/O emission

- Ni56 clumps are mixed to large radii
- Surrounding medium expands freely
- Beta decay of Ni heats up Ni-bubble that expands
- Inside bubble density decreases
- Outside shell of swept up material

IAUS 331 La Réunior

Reverse shock and Rayleigh-Taylor instabilities

From shock break out towards homology

5e13 cm

Time=1.1d -5e14 cm

Time=527.2d

Comparing different models

Young SNR

IAUS 331 La Réunion

э

Expansion of 3%-Ni fractions: V/t^3

Young SNR

IAUS 331 La Réunion

Velocities of Ni56

• High velocity material slowed

Different elements - 25% enclosed mass

Tentative comparison to observations

3D isosurface of [Si I]+[Fe II] emission of SN87A Larsson et al. 2016

3% mass fraction of X56 of W15

IAUS 331 La Réunion

Tentative comparison to observations

Milisavljevic & Fesen (2015) ([S III] emission)

75% of all C12 (model W15)

Michael Gabler

Young SNI

IAUS 331 La Réunion

э

Density slice (model B15)

Michael Gabler

Density slice (model B15)

Michael Gabler

Young SNR

Conclusions

- Asymmetries are seeded during epxlosion ($t \lesssim 1s$)
- Rayleigh-Taylor instabilities change their shape and may cause fragmentation into smaller 'fingers'
- Growth of 'RT-fingers' depends on progenitor structure
- Newly formed outwards shock accelerates innermost ejecta
- Beta decay 'smears' small RT-fingers and causes merging of fine structures
- $\bullet\,$ Homology (fine structures do longer change) reached after several beta-decay timescales ($\sim 1/2 {\rm y})$
- Direct comparison to observations not straight forward (molecule formation, dust, emission mechanism) (But see Wongwathanarat et al. 2016 for Ti44)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●