IAUS 331: SN 1987A, 30 years later, La Reunion, February 20-24, 2017

Supernova Remnants and High Energy Neutrinos

Soebur Razzaque

University of Johannesburg, South Africa

srazzaque@uj.ac.za

Reetanjali Moharana & S.R., JCAP 12, 021 (2016)

Motivation

Well motivated sources of cosmic rays up to the "knee" of the cosmic-ray spectrum Some evidence from gamma-ray observations (*pp* interactions)

High-energy neutrino production motivated and modeled (various scenarios) Search and model supernova/starburst activity for IceCube HESE neutrinos

Loeb & Waxman 2006 Anchordoqui, Paul, da Silva et al. 2014 Tamborra, Ando & Murase 2014 Emig, Lunardini & Windhorst 2015

Interesting hint of correlation of neutrino arrival directions with starburst sources

Smoking-gun signature of cosmic-ray acceleration?

Bechtol, Ahlers, Di Mauro, Ajello & Vandenbroucke 2015

Soebur Razzaque

. . . .

High-energy neutrino production motivated and modeled (various scenarios) Search and model supernova/starburst activity for IceCube HESE neutrinos

Loeb & Waxman 2006 Anchordoqui, Paul, da Silva et al. 2014 Tamborra, Ando & Murase 2014 Emig, Lunardini & Windhorst 2015 Bechtol, Ahlers, Di Mauro, Ajello & Vandenbroucke 2015

- Study correlation between sources and HESE neutrinos
- Model gamma-ray emission with pp interactions
- Compare neutrino emission from *pp* model with data
- Draw conclusions

High probability of being extra-terrestrial: 39 shower events, 14 track events

Angular correlation with starburst sources

SN-related source samples for statistical study

Source set name	# of sources	Source type
Sample-I	7	4 IRAS + 3 FGL and 3 IRAS
Sample-II	7	4 IRAS + 3FGL and 3 TeVCAT local Starforming Reg.
Sample-III	33	2FHL SNRs+PWNs+SPPs
Sample-IV	12	2FHL PWNs
Sample-V	15	2FHL SNRs
Sample-VI	6	2FHL SPPs

Samples I and II from *Emig, Lunardini and Windhorst 2015* Infra-Red Astronomical Satellite (IRAS) sources, flux *S*(100 um) > 250 Jy 3FGL: 4-year Fermi-LAT Point Source Catalog, *arXiv:1501.02003* 100 MeV – 300 GeV, 3033 sources 2FHL: The second catalog of hard Fermi-LAT sources, *arXiv:1508.04449* 50 GeV – 2 TeV; 80 month data; 360 sources; 33 Galactic PWN – Pulsar Wind Nebula SNR – Super-Nova Remnant SPP – Super-Nova Remnant or Pulsar Wind Nebula TeVCat: 176 sources, <u>http://tevcat.uchicago.edu/</u>

Angular separation between the neutrino and source: $\gamma = \cos^{-1}(\hat{x}_{neutrino} \cdot \hat{x}_{source})$

Divide the angular error $\delta\theta$ of the HESE events in M = 20 concentric rings Count the number of sources in each of the rings forming a neutrino-source pair: n_i^{data}

 $(j-1)2\delta\theta/M \leq \gamma < j2\delta\theta/M$ j=1,2,...M Tinyakov & Tkachev 2001

Mean Monte Carlo simulated pairs:
$$\bar{n}_j^{
m mc} = \sum_{i=1}^N n_{ij}^{
m mc}/N$$
 $N = 100,000$

Monte Carlo simulated data:

Isotropic distribution of sources (isotropic null)

(Galactic sources concentrated within +/-10 deg Galactic plane) Isotropic distribution in Galactic longitude only (semi-isotropic)

p - value: (frequentist's approach)

Number of times the simulated pairs are equal or greater than data in a given ring/N

Cross-correlation results - Sample I

Results from crosscorrelation study of the 7 infrared bright starburst galaxies and the IceCube cosmic neutrinos in 4-year sample.

Top panels – All neutrino events

Bottom panels – Events above 60 TeV

Cross-correlation results - Sample II

Results from crosscorrelation study of the 7 TeV-detected starburst galaxies and regions and the IceCube cosmic neutrinos in 4-year sample.

Top panels – All neutrino events

Bottom panels – Events above 60 TeV

Cross-correlation results - Sample III

Results from crosscorrelation study of the 33 Galactic sources from the Fermi-2FHL catalog (above 50 GeV) and the IceCube cosmic neutrinos in 4year sample.

Top panels – All neutrino events

Bottom panels – Events above 60 TeV

Cross-correlation results - Sample IV

Results from crosscorrelation study of the 12 Galactic PWNs from the Fermi-2FHL catalog (above 50 GeV) and the IceCube cosmic neutrinos in 4-year sample.

Top panels – All neutrino events

Bottom panels – Events above 60 TeV

Cross-correlation results - Sample V

Results from crosscorrelation study of the 15 Galactic SNRs from the Fermi-2FHL catalog (above 50 GeV) and the IceCube cosmic neutrinos in 4-year sample.

Top panels – All neutrino events

Bottom panels – Events above 60 TeV

Cross-correlation results - Sample VI

Results from crosscorrelation study of the 6 Galactic SPPs from the Fermi-2FHL catalog (above 50 GeV) and the IceCube cosmic neutrinos in 4-year sample.

Top panels – All neutrino events

Bottom panels – Events above 60 TeV

post-trial

post-trial

Source	All $\nu_{\rm S} semi$ -	$E_{\nu} > 60 \mathrm{TeV}$	Post trial	All ν s	$E_{\nu} > 60 \mathrm{TeV}$	Post trial
sets	isotropic	semi-isotropic	p-value	isotropic	isotropic	p-value
	\mathbf{random}	random	semi-isotropic	\mathbf{random}	random	isotropic
	p-value	p-value	random	p-value	p-value	random
Sample-I	$1.9 imes10^{-2}$	0.518	0.54	$1. imes 10^{-2}$	$6.6 imes10^{-2}$	0.34
Sample-II	$2.3 imes 10^{-3}$	0.177	$8.8 imes 10^{-2}$	2×10^{-3}	0.123	7×10^{-2}
Sample-III	$2.4 imes10^{-2}$	$3.8 imes 10^{-3}$	0.141	$1.7 imes 10^{-2}$	$1.6 imes10^{-3}$	$6 imes 10^{-2}$
\mathbf{Sample} -IV	2.65×10^{-2}	$9.23 imes 10^{-3}$	0.3112	$3 imes 10^{-2}$	$1.2 imes 10^{-2}$	0.38
Sample-V	0.11	0.13	0.99	0.15	$8.95 imes 10^{-2}$	0.97
Sample-VI	$1.33 imes 10^{-2}$	$3.4 imes 10^{-2}$	0.4149	$6.1 imes 10^{-3}$	$2.12 imes 10^{-2}$	0.22

Weak / statistically insignificant correlation

Semi-isotropic null

Isotropic null

Hadronic modeling of gamma and neutrino

Estimate neutrino flux from events within 2x angular errors around correlated source directions

Fit gamma-ray data in the VHE range using pi0 decay photons and estimate corresponding neutrino flux

- Cosmic-ray proton spectrum: $N_p = N_0 E_p^{-\alpha} exp(-E_p/E_0)$ 3 parameters
- *pp* interactions with surrounding gas:

neutral and charged pions decay to gamma and neutrino

• gamma-ray spectrum from pi0 decay: $\frac{dN_{\gamma}}{dE_{\gamma}} = \frac{2c\tilde{n}\langle n_H \rangle}{4\pi D_L^2 K_{\pi}} \int_{E_{\pi,th}}^{\infty} dE_{\pi} \frac{\sigma_{pp}(E_{\pi})}{\sqrt{E_{\pi}^2 - m_{\pi}^2}} N_p(E_{\pi})$

Gas density ~1/cm^3

Aharonian & Atoyan 1995

neutrino spectrum is ~2/3 of the gamma-ray spectrum

Starburst galaxies

Star-forming regions

- · 4 starburst galaxies and 2 star-forming regions are correlated with HESE
- $\cdot\,$ The other star-forming region is listed in the 2FHL catalog as SNR
- Typical y-ray luminosity for starburst galaxies: ~ 10⁴⁰ erg/s, *pp* efficiency ~ 5%
- Star-forming region γ -ray luminosity ~ 10³⁰ 10³² erg/s, *pp* efficiency ~ 5%
- Cosmic-ray cutoff energy ~ 0.01 1 PeV

SPP (SNR or PWN) sources

- 4 SPP and 9 SNRs are correlated with HESE neutrinos
- Typical Y-ray luminosity for: ~ $10^{32} 10^{36}$ erg/s, *pp* efficiency ~ 5 10%
- Cosmic-ray cutoff energy ~ 0.01 0.5 PeV

Soebur Razzaque

UNIVERSITY CHANNESBURG

HE neutrinos from supernova-related sources

- Weak (statistically insignificant) correlation with IRAS+3FGL+TeVCat and 2FHL
- *pp* interaction model, fitting gamma-ray data, cannot account for neutrino flux

May be ...

Other scenarios - early phase: not discussed Hypernovae with semi-relativistic jets/outflows Razzaque, Meszaros & Waxman, PRL 93, 181101 (2004) Ando & Beacom, PRL 95, 061103 (2005) Shock breakout Waxman & Loeb, PRL 87, 071101 (2001) Hypernovae with high-velocity wind Wang, Razzaque, Meszaros & Dai, PRD 76, 083009 (2007)

Future progress

Better angular resolution of the neutrino events - tracks and cascades No correlation - ambiguous, diffuse emission from many SNRs (?) Significant correlation - new research area, additional component (?)

Backup Slides

Change of p-value with time (3 yr and 4 yr)

Starburst galaxies and regions

Sources	Neutrino ID	Distance	Fitting Parameters			
Names	Number	D_L	$E_0 [{ m TeV}]$	α	$L_{CR}/10^{40}[\mathrm{erg/sec}]$	$L_\gamma/10^{40}[{\rm erg/sec}]$
NGC 253	7, 10, 21	3.1 Mpc	500	2.4	6.5	0.44
NGC 1068	1	13.7 Mpc	10	2.5	115.7	7.61
IC 342	31	-	-	-		
M 82	31	3.6 Mpc	1000	2.35	14.6	1.
NGC 4945	35	3.9 Mpc	10	2.5	14	0.61
M 83	16	-	-	-		
NGC 6946	34	-	-	-		
W 49A	25, 34, 35	-	-	-	-	
Cygnus Cocoon	29, 34	50 pc	100	2.26	$1.4 imes10^{-7}$	$9.5 imes10^{-9}$
30 DorC	34	100 pc	1000	2.6	5×10^{-8}	3.4×10^{-9}

Sources	Neutrino ID	Distance	Fitting Parameters			
Names	Number	D_L	$E_0 [{ m TeV}]$	α	$L_{CR}/10^{40}[\mathrm{erg/sec}]$	$L_\gamma/10^{40}[{ m erg/sec}]$
SNR G315.4-2.3	35	2.5 kpc	100	1.77	$1.6 imes10^{-5}$	$1.3 imes10^{-6}$
SNR G326.3-1.8	-	-	-	-	-	-
SNR G338.3-0.0	25	8.6 kpc	100	2.35	$1.2 imes 10^{-3}$	8×10^{-5}
VelaJr	40	$0.2 \ \mathrm{kpc}$	50	1.8	$3.8 imes10^{-7}$	$2.8 imes 10^{-8}$
PuppisA	-	-	-	-		
RXJ1713.7-3946	25	1 kpc	80	1.8	$1.15 imes 10^{-5}$	9×10^{-7}
HESSJ1800-240A	24,25,2,14	2 kpc	100	2.6	$9.3 imes10^{-5}$	$6.2 imes10^{-6}$
W 28	24,25,2,14	$2 \mathrm{~kpc}$	8	2.4	$1.8 imes10^{-4}$	$1.2 imes10^{-5}$
W 49B	25, 33, 34	$11.4 \mathrm{kpc}$	15	2.6	3×10^{-3}	$3. \times 10^{-4}$
W 51C	25, 34, 35	4.3 kpc	500	2.5	$4.3 imes 10^{-4}$	$2.9 imes 10^{-5}$
IC 443	-	-	-	-		
S 147	-	-	-	-		
Gamma Cygni	29, 34	-	-	-		
$\operatorname{SNR}\operatorname{G150.3+4.5}$	-	-	-	-		
Cas A	34	3.4 kpc	15	2.1	$5.7 imes10^{-4}$	$3.7 imes10^{-5}$

Supernova remnants or pulsar wind nebulae (SPP)

Sources	Neutrino ID	Distance	Fitting Parameters			
Names	Number	D_L	$E_0 [{ m TeV}]$	α	$L_{CR}/10^{40}[{\rm erg/sec}]$	$L_\gamma/10^{40}[{\rm erg/sec}]$
2FHL SPPs						
HESSJ1614-518	52	10 kpc	10	1.8	$8.3 imes10^{-4}$	$5.6 imes10^{-5}$
HESS J1745-290	25, 2, 14	$8.5 \ \mathrm{kpc}$	250	2.37	$1.16 imes10^{-3}$	$7.7 imes10^{-5}$
W 30	24,25,2,14	-	-	-		
W 41	24, 25, 2	$4 \mathrm{kpc}$	10	2	1×10^{-4}	$6.6 imes10^{-6}$
SNR G74.9+1.2	29, 34	12 kpc	50	2.25	$3.8 imes10^{-3}$	$2.5 imes10^{-4}$
PSR J0205+6449	-	-	-	-		