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Neutrino-Driven Supernova Mechanism

Temperature and Density of the Core
Becomes so High that:
Iron dissociates into alpha particles
Electrons capture onto protons
Core collapses nearly at freefall!
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Core reaches nuclear densities

Nuclear forces and neutron
degeneracy increase pressure

Bounce!




The Herant et al. (1994) Convective Supernova Engine
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C15-3D 300 ms

400 km

Lentz et al. 2015

C15-3D 400 ms

Depending on the
physics, most
groups Now
produce
explosions with
this convective
engine. Current
arguments focus
on the:
* Most
Important
physics

e Source of

instabilities
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For long-duration gamma-
ray bursts, a class of black-
hole accretion disk engines
have been proposed. Here,
magnetic fields our wound
up in the disk formed with
the high-angular
momentum layers fall onto
a failed supernova.

If the core is rapidly-
rotating, a disk can form
around the proto-neutron
star.

If strong magnetic fields
form (and not buried) in a
rapidly rotating neutron
star, magnetar engines may
also work.

Both magnetic field engines
predict jet-like explosions.
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Neutrino-Driven Supernova Mechanism: Convection

Infalling Material

Produces
Accretion Shock
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The Convective
Region Must
Overcome this
Pressure to
Launch an
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Entropy Driven
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For most stars, the
maximum energy is a few
times 10°! erg. Fallback can
increase this value, but not
by too much.

This is a natural explanation
for the energy, but it means
that this engine can not
explain hypernovae.
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Bind.(Expl.) Energy (Ergs)

Fryer 1999
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DiStribUtiOn Of :_: STD Model: Z=0.02 and NS mass + 0.1Mg
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Merger Rate Density [Mpc—2 yr-!]
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Yields

Supernova expel
the yields made
during stellar
evolution. The
supernova shock
alters these yields,
destroying some
material and
making others.

The elements
made in the
innermost ejecta
are most sensitive

to the amount of
fallback.
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10"

To understand mixing, we must .
compare elements produced at

the engine to remnants, making ; '°'
this a turbulent burn problem. : 10’

g o
Magkotsios et al. 2010 studied .
the °°Ni and #4Ti yields. |

4 5 6 7 8 (] 10
Peok Temperoture (Tg)

Peak Density (g cm™)

Peck Density (g cm™)

10'° 10°2
1073
10°
107*
10®
1073
107 10°®
1077
108
1078
10°
107°
10‘ 10—10
4 5 6 7 8 9 10

Peak Temperature (Tg)

Peok Temperoture (T,)



NuSTAR
demonstrates
low-mode
convection in the
engine
(Greffenstette et
al. 2014)

*  “Tiis produced
in the core (near
the convective
engine).

Because
NuSTAR detects
the decay
emission from 44Ti,
it provides a direct
probe of the
engine.

The structure
shows a low mode
explosion.

More on
observations from
Brian Grefenstette
and simulations by
Janka.




Conclusions

Convection-enhanced Magnetic field models may
supernova engine explains explain:
many aspects of normal * more energetic
supernovae. explosions (would require
* near foe energies tuning to explain peak at
* remnant mass range (yes, ~foe energies)
but model can predict a * remnant masses
range of results) (predictions?)
* vyields (but range * vyields (with turning)
predicted) e generic asymmetries
* generic asymmetries e Not Cas A

e 4T distribution in Cas A



