

International Centre for Radio Astronomy Research

The Radio Remnant of Supernova 1987A - A Broader View Giovanna Zanardo

Government of Western Australia Department of the Premier and Cabinet

International Centre for Radio Astronomy Research Lister Staveley-Smith Bryan Gaensler Dick Manchester Tasso Tzioumis Stephen Ng Remy Indebetouw Mikako Matsuura

Government of Western Australia Department of the Premier and Cabinet Office of Science

Radio all the way

2007–2014

telescopes

Patefindert

lia<mark>203</mark>quare

on Widefield

1987–present

2011–present

What are we observing?

CRAR What are we observing?

Emission Sites

(1) the unshocked ejecta in the center;

(2) the ejecta shocked by the reverse shock;

(3) the CSM at the inner edge of the equatorial ring shocked by the reverse shock;

(4) the CSM at the outer edge of the equatorial ring shocked by the forward shock;

(5) the CSM within the inner ring radius which, after being shocked by the forward shock, have been shocked also by the reflected shock.

Emission Sites

NASA/ESA, A. Field (STScl)

Remnant evolution

Potter+ 2014

Evolution of the radio remnant

Potter+ 2014

Evolution of the radio remnant

Evolution of the radio remnant

Staveley-Smith+ 2014

Multi-frequency Flux Monitoring

Evolution – Global spectral index

Particle acceleration by the shock front

CRAR

Evolution – Morphology at 9 GHz

1992.9 1999.7 1993.6 1994.4 1995.7 1996.71998.0 1998.9 2004.0 2000.9 2001.9 2003.0 2003.6 2004.4 2005.2 2005.5 2010.1 2006.2 2006.5 2006.9 2008.0 2008.3 2008.8 2009.4 2010.3 2011.1 2011.3 2012.0 2012.4 2012.7 2013.2 2013.3 3×10⁻³ 10^{-3} 2×10⁻³ 4×10^{-3} 5×10^{-3} 6×10^{-3} 7×10⁻³ 8×10⁻³ 9×10⁻³ 0.01 0.011 0.012 0.013 0.014 0.01(

IAUS331 – Giovanna Zanardo

Ng+ 2013

9 GHz Observations

ICRAR

Ng+ 2013

9 GHz Observations

Expansion

Asymmetry

A new phase from Day ~7000-7500

CRAR

Evolution – Morphology in high resolution

Nov 2011

Evolution – Morphology in high re

Evolution – Morphology in high resolution

47 GHz

May 2016

27

0.20"

Asymmetric expansion

Zanardo+ 2013

IAUS331 – Giovanna Zanardo

VLBI observations

LBA

Imaging Frequency: 1.4 GHz Oct 2007, July 2010, Aug 2011, 2012

Frequency: 1.6 GHz Nov 2008, 2013

VLBI observations

IAUS331 – Giovanna Zanardo

VLBI observations

IAUS331 – Giovanna Zanardo

VLBI - Image 24 Augure (J2000)

-1

27.8^s

ATCA + ALMA: Emission components

IAUS331 – Giovanna Zanardo

Asymmetry ratio decreases at higher frequencies.

We attribute this to the shorter synchrotron lifetime at high frequencies.

IAUS331 - Giovanna Zanardo

ATCA + ALMA: SED & residuals

ATCA + ALMA: SED & residuals

Zanardo+ 2014

-4

ATCA + ALINA Spectral maps

102-213 GHz

44-94 GHz

N2

S1

E2

N1

C1

W2

W

S

N

W

44-345 GHz

Emission from the central region

ATCA+ALMA: Possible PWN constraints

- Dispersion measure: $1000 \lesssim DM \lesssim 6000 \text{ cm}^{-3}$
- Swept-up velocity: $260 \lesssim v_{\rm PWN} \lesssim 410 \ {\rm km \ s^{-1}}, \ \widehat{\Xi}^{\circ}_{\rm 1.5}$
- Magnetic field strength: $1 \lesssim B_{\text{PWN}} \lesssim 7 \text{ mG}$
- Period:

P~150 ms

• Size:

 $0\rlap{.}^{\prime\prime}05$ \lesssim $R_{\scriptscriptstyle\rm PWN}$ \lesssim $0\rlap{.}^{\prime\prime}15$

• Spectral break below 70 MHz, likely at ≤ 60 MHz

Callingham+ 2016

Constraints on the Magnetic field

Summary

- To date there are ongoing observing campaigns from 70 MHz to 700 GHz.
- The SNR has recently entered a new evolutionary stage. The SN is gradually moving past the high density CSM and expanding above and below the equatorial ring.
- The detection of synchrotron emission from the central region is still elusive, while the spectral indices for the inner region are consistently flat across large frequency ranges.
- Detection of polarisation with ATCA is still hampered by beam depolarisation and will be definitely more accurate with the upcoming ALMA observations.
- A radial magnetic field and a direct correlation of brightness with polarisation seems consistent with the presence of CR production.