

H.E.S.S. Observations of the LMC

Nukri Komin^{*} for the H.E.S.S. Collaboration

*Wits University, Johannesburg, South Africa https://www.mpi-hd.mpg.de/hfm/HESS/HESS.shtml

... or 30 years after SN 1987A

- there is no TeV emission from SN 1987A
- motivation for this talk
 - overview of TeV emission from LMC
 - individual TeV sources \rightarrow most powerful accelerators in LMC
 - sensitivity for SN 1987A

High Energy Stereoscopic System

- 5 Imaging Cherenkov Telescopes
- record Cherenkov light of air showers
- 5° field of view (CT 1–4)
- 100 GeV ... tens of TeV
- angular resolution ~0.07°
- Namibia → only instrument for TeV observations of the LMC
- data presented here: only 4 telescopes
 - CT5 ignored when present

H.E.S.S. LMC Observation Campaign

- time line:
 - 2004: start with SN 1987A
 - 2009: 49 h
 - A&A 545, L2 (2012)
 - 2013: 210 h
 - Science 347:6220, 403 (2015)
 - now: 277 h
- observation conditions
 - large zenith angle (45° 52°)
 - → energy threshold ~700 GeV
- spatial coverage:
 - mainly around Tarantula nebula
 - some coverage further out

H.E.S.S. Background Subtraction

- background from ring around target position
 - radius 0.7°
- sensitive to point-like sources only
- not sensitive to diffuse emission
- possible diffuse emission is subtracted

The Tarantula Nebula

- largest star forming region in Local Group
- objects
 - SN 1987A
 - PSR J0537–6910
 - $\dot{E} = 4.9 \ 10^{38} \text{ erg/s}$
 - superbubble 30 Dor C
 - PSR J0540–6919
 - $\dot{E} = 1.5 \ 10^{38} \ \text{erg/s}$

The Pulsar Wind Nebula N 157B

 clearly centred on PSR J0537–6910

- no significant spectral cut-off
- $L_{1-10 \text{ TeV}}(50 \text{ kpc}) = (6.8 \pm 0.3) \ 10^{35} \text{ erg/s}$
 - 0.1% Ė

The Pulsar Wind Nebula N 157B

- PWN:
 - inverse Compton on strong infra-red fields \rightarrow bright in gamma rays
 - X-ray synchrotron emission \rightarrow low magnetic field of 45 μ G
 - constant injection of 11% *E* into electrons >400 GeV
- Fermi/LAT
 - Fermi coll. A&A 586, A71 (2016)
 - matches model
 - 2nd component?
- Crab Nebula
 - 123 µG
 - 50% Ė
- → N 157B apparently inefficient accelerator

The Birth Period of PSR J0537–6910

- modelling total emission, from radio to TeV [A&A 545, L2 (2012)]
- total energy in electrons: 4 x 10⁴⁹ erg
- relate to spin-down
- birth period <10 ms
 - confirming earlier results
 - but independent of
 - age
 - braking index
 - glitch history

$$W_{\text{tot}} = \epsilon \eta \left(E_{\text{rot},0} - E_{\text{rot}} \right)$$
$$= \epsilon \eta \frac{1}{2} I \left(\left(\frac{2\pi}{P_0} \right)^2 - \left(\frac{2\pi}{P} \right)^2 \right)$$
$$= 2 \times 10^{49} \epsilon \eta \frac{I}{10^{45} \text{ g cm}^2} \left(\left(\frac{10 \text{ ms}}{P_0} \right)^2 - \left(\frac{10 \text{ ms}}{P} \right)^2 \right) \text{ erg}$$

- additional emission SW of PWN
 - 130 pc at 50 kpc
- >5 σ above spill-over
- two-source morphology favoured by 8.8σ
- position (contours) compatible with
 - non-thermal X-ray shell of superbubble 30 Dor C
 - star clusters of LH 90 (♦)
- not compatible with SN 1987A (▲)
- note: angular resolution does not allow conclusion on morphology

H.E.S.S

hadronic scenario

- $W_{pp} = (0.7 25) \times 10^{52} (n_{H} / 1 \text{ cm}^{-3})^{-1} \text{ erg}$
- high density clouds: n_H ~ 60 cm⁻³ [Sano et al. AIP1792, 040038 (2017)]
- 10⁵⁰...10⁵¹ erg in protons
- leptonic scenario
- low magnetic field: ~15 µG
- 4 x 10⁴⁸ erg in electrons
- no model favoured
- but: evidence for efficient particle acceleration in a superbubble

00 84.100 84.000 83.900 Right Ascension (J2000) [degree]

The Supernova Remnant of SN 1987A

- not detected
- gamma ray flux
 F (>1 TeV) < 5 x 10⁻¹⁴ cm⁻²s⁻¹
 - 99% confidence level
- gamma ray luminosity
 L (>1 TeV) < 2.2 10³⁴ erg/s
- at predicted level [Berezhko, Ksenofontov & Völk 2015]

[Science 347:6220, p 406 (2015)]

The Large Magellanic Cloud

The Supernova Remnant N 132D

- potential gamma ray emitter [Katz & Waxman, 2008]
- significant detection:
 - 4.7 σ (2013)
 - now >5σ

spectral index 2.4 ± 0.3

 $L_{1-10 \text{ TeV}}(50 \text{ kpc}) = (9 \pm 2) \ 10^{34} \text{ erg/s}$

The Supernova Remnant N 132D

hadronic scenario

- energy in protons $W_{pp} = 10^{52} (n_H/1 \text{ cm}^{-3})^{-1} \text{ erg}$
- → efficient energy conversion to Cosmic Rays (17%) or high post-shock density
- possible interaction with interstellar clouds
- leptonic scenario
 - infra-red from dust
 - magnetic field ~20 µG
 - depends on level of non-thermal X-rays
- Fermi results: hadronic/leptonic?
- N 132D intermediate age
 - how long do SNRs accelerate up to 10¹⁵ eV

[Sano et al. AIP1792, 040038 (2017)]

The Large Magellanic Cloud

LMC P3 – A New Gamma-Ray Binary

- previously unidentified *Fermi* source
 - [Fermi coll., A&A 586, A71 (2016)]
- blind search found periodic emission
 - [Corbet et al., ApJ, 829:105 (2016)]
 - period 10.301 ± 0.002 days
 - X-ray and radio in anti-phase
- companion star
 - 05 III(f)
 - similar to gamma-ray binaries LS 5039 and 1FGL J1018.6-5856

LMC P3 in TeV gamma rays

- 100 h acceptance corrected live-time
- 65 excess events, 5.5 $\sigma \rightarrow$ firm detection
- phase-folded light-curve, phase 0 at Fermi maximum
 - roughly equal exposure per phase bin
- emission only between 0.2 and 0.4: 6.8 σ (6.6 σ after 5 trials)
 - clear modulation with orbital period
 - at minimum of GeV emission
- no direct measurement of periodicity
 - Lomb-Scargle test
 - auto-correlation function

LMC P3 in TeV gamma rays

LMC P3 in TeV gamma rays

- 6th TeV gamma-ray binary
- similar to LS 5039 and 1FGL J1018.6-5856
 - companion star: O5III(f), O6V(f), O6.5V(f)
 - orbital period: 10.3 d, 3.9 d, 16.6 d
- most luminous: 10³⁵ erg/s (rather than 10³³erg/s)
- GeV and TeV emission in anti-phase
- unknown:
 - compact object?
 - orbital parameters: inclination, distance, periastron, ...

Summary

- 4 TeV sources in LMC:
 - PWN N 157B
 - 30 Dor C
 - N 132D
 - binary LMC P3
- 4 different source classes
- first individual cosmic-ray sources in an external galaxy
 - similar to Milky Way 10 years ago tip of the iceberg?
 - future observations with CTA

