SN 1987A at 30 years

Claes Fransson The Oskar Klein Centre Stockholm University

Collaborators: Josefin Larsson, Katia Migotto, Anders Jerkstrand, Peter Lundqvist, Bruno Leibundgut, Jason Spyromilio, Bob Kirshner, Peter Challis, Kevin France, Roger Chevalier, Dick McCray, Mikako Matsuura, Remy Indebetow

87A review in Ann. Rev. Astr. & Astroph. 2016 R. McCray & CF

- Ring collision: Progenitor environment. Shock physics
- Ejecta: morphology,
 nucleosynthesis -> Explosion
 mechanism
 Mainly optical/NIR

Earlier 'historical' by Bob Kirshner

First SN conf.? Paris 1939

Figure 39 Conference on Novae, Supernovae, and White Dwarfs, Paris (1939) In front row Cecilia Payne-Gaposchkin is second from left, Henry Norris Russell third, Arthur S. Eddington fifth; in second row Pol Swings is third from left, then Gerard P. Kuiper, Bengt Strömgren, Subrahmanyan Chandrasekhar, and Walter Baade. Knut Lundmark is standing in front of Chandrasekhar. Courtesy of Yerkes Observatory.

Similarities??

SN 1987A ring evolution

Ring: First decay until 2000, increase until 2007, then decay

- Recombination after initial UV/soft X-ray flash
 Colligion (19)
- II. Collision with ejecta

Optical, X-ray and radio evolution

HST, Chandra, ATCA CF+ 2015, Frank+ 2016, Ng+ 2013

Borkowski. Blondin & McCray 1997

Blast wave velocity in H II region $V_{forward} \approx 2000 - 4000$ km/s

Shock velocity into ring \approx $\left(\frac{n_{HII}}{n_{ring}}\right)^{\frac{1}{2}} V_{forward} \approx 200 - 400 \ km/s$

K. Migotto+ in prep.

[O I] to [Fe XIV]

Velocity components in $\text{H}\alpha$

UVES / VLT

K. Migotto+ in prep.

- Un-shocked ring V~10 km/s
- Shocked ring V ~ 300-700 km/s
- SN ejecta (inner core)
 V~2000 -3000 km/s
- Reverse shock
 V~ 11,000 km/s

Dewey+ 2010

Chandra grating spectrum

Probes the highest temperatures and shock velocities: Si XIV, Fe XXII.....

Complementarity of optical and X-ray from cooling shocks

Radiative shock structure

Post-shock densities $\sim 5 \times 10^6 - 10^7 \text{ cm}^{-3}$.

Shock laboratory: Cooling shocks in real time

K. Migotto+ 2016

Faster and faster shocks become radiative.

Radio: Testing relativistic particle acceleration

CF, Larsson, Migotto+ 2015

Transition to SN remnant

The ring at different wavelengths

Modeling of X-rays

Orlando+ 2015 Talk by Orlando

CSM similar to Chevalier & Dwarkadas '95 + clumpy ejecta and ring

Similar simulations of the radio emission by Potter et al 2014

Transition to SN remnant

CF, Larsson, Migotto+ 2015

2013

2014

The ejecta

Also the ejecta are getting brighter

Ejecta: Decaying until 2001, then increasing

CF+ 2015

Soft X-rays from transmitted shocks have kT ~ 0.3-0.5 keV \Rightarrow deposition in outer parts of ejecta = H/He rich regions

Hard X-rays with > 2 keV penetrate to but not into the O-core unless very asymmetric and clumpy

Explains horse-shoe-like morphology in $H\alpha$

Ejecta morphology in $H\alpha$

Ejecta tomography of SN 1987A Larsson+ 2016

3D distribution of ⁴⁴Ti Larsson+ 2016

VLT/SINFONI: [Si I]+[Fe II] 1.644 μ

Maps ⁴⁴Ti input to Si/Fe and therefore the ⁴⁴Ti distribution r Mainly in ring plane. NOT jet. V ~ 2300 km/s Less sensitive to chemistry, photodissociation, excitation ^{0.0} than the molecular lines

3D simulations of the ejecta structure

M. Gabler et al, in prep. Wongwathanarat+ 2015 See also Hammer et al. 2010.

Molecular hydrogen in 87A CF, Larsson, Spyromilio+ 2016

Mixing of H with metal core to < 400 km/s

⁴⁴Ti mass

Dominates for > 1500 days. Most emission in mid- and far-IR -> spectral modeling of UV/optical/NIR required for ⁴⁴Ti mass

mainly Fe I emission from SN core

Obs. SINS/HST (Chugai et al 1996)

⁴⁴Ti mass from hard X-rays

Boggs et al Science May 8 2015

Talk by Grefenstette

Energy budget at 30 years for the inner ejecta Energy input from ⁴⁴Ti positrons ~278 L_o. (gamma rays escape freely)

~40% into UV/optical/NIR (UVONIR) emission by non-thermal excitation & ionization of which ~65% is absorbed by the dust, or ~0.4 \times 0.65 \times 278 L_o = 72 L_o.

UVONIR luminosity only ~15 % of the total!

~60% goes to heating, balanced by the [FeII] 26-µm line. ~0.6 × 278 L_{\odot} = 167 L_{\odot} . Spitzer limit at least factor 10 lower!

Dust-absorbed energy: $167 + 72 = 239 L_{\odot}$

Herschel 100-500µm ~220 L_o (Matsuura et al. 2011). Agreement!

So, everything is fine, EXCEPT for understanding the very weak [Fe II] line

What weakens the [Fe II] 26 μm line?

Cooling by dust?

Requires the dust and iron to be co-existing. Fe – grains? Problem: Fe mass << dust mass

Dust absorption

Require the dust to absorb nearly all radiation in the 10–100-µm band but NOT in the optical

Pure MgSiO₃ and MgSiO₄ and Al₂ O₃, have an opacity in the 10– 30µm range, which is a factor of $^10^2 - 10^3$ greater than that at optical wavelengths (Jäger et al. 2003).

May be tested with JWST

Jäger+ 2003

What's next?

Reverse shock moves deeper into ejecta

Ring at V=6.1x10¹⁷ cm / t = 7800 (t/10⁴ days)⁻¹ km/s. Reverse shock at ~80% of ring + 45° inclination $\rightarrow V_{ejecta} \sim 4000$ km/s at ring now

O-core at 2000-3000 km/s. [Fe II] wings to ~ 4000 km/s at ~ 1000 days. Mixing, instabilities likely to cause metal blobs to be present at higher velocities.

May soon give stronger He I and O I emission from He/O core at reverse shock, perhaps also Fe. Ejecta increasingly ionized by X-rays.

Forward shock continues into RSG CSM

Compact object: Maximum extra input on top of ⁴⁴Ti ~ 10³⁵ erg ^{s-1} X-ray optical depth ~ 1 at 10 keV now, but sensitive to clumping close to compact object. $\tau \propto 1/t^2$ (CF&RAC 1987, Orlando+2015)

'Old' facilities – continued monitoring

🛛 HST

- Follow the changing morphology of the ejecta due to the X-ray input
- Optical/UV emission outside the ring New UV-spectrum with HST today or tomorrow!
- □ Chandra/NuSTAR
- Continued shock evolution
- Compact source?

- Other molecules and isotopologues
- Pulsar wind nebula?

New facilities – new opportunities

JWST Oct 2018:

- Mid-IR lines. [Fe II] 26 μ m. Dust absorption / cooling?
- Dust destruction in ring collision
- **E**-ELT, GMT + AO 2024+:
- Much higher 3D spatial resolution of the NIR lines → probing the explosion dynamics in detail
- Shock dynamics & ring destruction at better than HST resolution
- **CTA** ~2020
- Particle acceleration, cosmic-ray production
- Pulsar?

Happy birthday 87A!

And let's hope for a new Galactic cousin very soon

Peculiar or not? (Ilpec)

Yes: Some properties were unexpected

- Compact BSG progenitor (Metallicity? Rotation? Binarity?)
- Light curve faint (consequence of compact BSG)
- CSM (consequence of rotation and/or binarity?)

No: Most properties 'normal' for a Type II CC

- Explosion energy ~10⁵¹ ergs
- 56 Ni mass ~0.07 M $_{\odot}$
- Core mass and core velocity ~ 2000 km/s
- H envelope mass ~ 7 M $_{\odot}$
- Mass 18 +/- 2 M_o
- Nucleosynthesis normal
- Neutrino burst consistent with predictions from normal core collapse (statistics small!)
- What is 'normal'? Crab (EC), Cas A (IIb), 87A (IIp). No IIP! 87A the most 'normal'?