

Disentangling the hadronic from the leptonic emission in the composite SNR G326.3-1.8

Justine Devin with F. Acero, J. Ballet, J. Schmid

IAUS 331: SN1987A, 30 years later 22th February 2017

SNR G326.3-1.8

J. Devin

Fermi/LAT data - Test Statistic map

300 MeV - 300 GeV

Energy-dependent morphology

2D symmetrical Gaussian fitted in 5 energy bands

Emission significantly extended from 1 GeV to 30 GeV

=> Clear trend toward the PWN at higher energies

J. Devin

Morphological analysis

Templates:

radio PWN:

radio SNR:

SNR mask:

Best model to reproduce the gamma-ray emission

SNR mask + radio PWN:

J. Devin

— IAUS 331: SN87A, 30 years later —

Conclusions

Morphological analysis of SNR G326.3-1.8

- * Source is significantly extended
- * Energy-dependent morphology shows a clear trend toward the PWN at higher energies

Spectral analysis of SNR G326.3-1.8

* Spectral energy distribution reveals two different spectral signatures which might suggest different origins (hadronic and leptonic for the SNR and the PWN, respectively)

Thanks for your attention!

BACKUP SLIDES

J. Devin

Extension of the source

Best fitted Disk:

Best fitted Gaussian:

Best fitted disk (left) and Gaussian (right). Crosses: centroid uncertainties, solid circles: R68%, dashed circles: errors on size

J. Devin

Energy-dependent morphology

2D symmetrical Gaussian fitted in 5 energy bands

Emission significantly extended from 1 GeV to 30 GeV

=> Clear trend toward the PWN at higher energies

J. Devin

MWL SED for the SNR

— IAUS 331: SN87A, 30 years later —

J. Devin

Region Of Interest - PSF3 events

- 6.5 years of data
- binned analysis

J. Devin

Morphological analysis

Point source	498.92	3	—
Disk	674.78	5	—
Disk + radio PWN ^(b)	688.11	7	13.32
Radio SNR ^(a)	660.09	2	—
Radio SNR ^(a) + radio PWN ^(b)	675.97	4	15.88
SNR mask ^(c)	663.18	2	_
SNR mask ^(c) + radio PWN ^(b)	689.42	4	26.24

Residual TS map when only the SNR mask is included on the model (showing the contribution of the nebula):

TS map with radio PWN

J. Devin

Test Statistic maps per energy band

0.3 - 1 GeV

3 - 10 GeV

1 - 3 GeV

10 - 300 GeV

J. Devin

Spectral analysis

Fit from 300 MeV to 300 GeV:

	Γ	$\Phi^{(erg.cm^{-2}.s^{-1})}$
Disk	2.07 ± 0.04	$(2.70 \pm 0.15) imes 10^{-8}$
PWN (radio)	1.79 ± 0.12	$(0.27 \pm 0.09) \times 10^{-8}$
SNR (mask)	2.17 ± 0.06	$(2.29 \pm 0.24) \times 10^{-8}$

J. Devin

Modeling the ROI

Residual TS map:

10° x 10 ° pixelsize=0.2°

- 12 sources added (red crosses) + 3FGL sources
- the SNR is included

— IAUS 331: SN87A, 30 years later —

J. Devin

Test Statistic

Count follow a Poisson statistics

Probability to obtain ni photon when the model predict lambda

$$P_i = \frac{\lambda_i^{n_i}}{n_i!} e^{-\lambda_i}$$

Total probability to obtain the data

$$L = \exp(-N_{pred}) \prod_{i} \frac{\lambda_i^{n_i}}{n_i!}$$

log(L)=LL

$$TS = 2 \times (LL_1 - LL_0)$$

 ΔTS to compare two nested models

Chi2-law with n degrees of freedom

J. Devin

radio PWN + SNR ring:

J. Devin

radio PWN + Disk:

J. Devin

Disk:

 Γ = 2.07 \pm 0.04

— IAUS 331: SN87A, 30 years later —

J. Devin

Parameters derived by Temim et al. 2013 - PWN

J. Devin

Optical identification

[Sydney Van Der Berg, 79]

FIG. 2.—The distribution of H α emission (*shaded*) is shown projected on the radio map by Clark, Green, and Caswell. The optical emission is seen to be associated with the outer shell of G326.3-1.8 and not with the polarized compact flat-spectrum component (Kes 25) contained within it. In the figure, asterisks mark the positions of the stars SAO 243056, 243092, 243093, and 243103. The positions of two new planetary nebulae are marked by circles.

J. Devin

Parameters derived by Temim et al. 2013

The radio emission is non-thermal, with a spectral index of $\alpha = 0.34$ for the non-thermal shell emission, where $S_{\nu} \propto \nu^{-\alpha}$, and 0.18 for the PWN component (Dickel et al. 2000). The PWN component is highly polarized, with a luminosity of $L_{10^7-10^{11}Hz} \sim 5 \times 10^{34} \,\mathrm{erg \, s^{-1}}$, making the radio PWN in MSH 15–56 the third most luminous after the Crab and G328.4+0.2 (Dickel et al. 2000).