High-resolution imaging of SNR IC443 and W44 with the Sardinia Radio Telescope

E. Egron (INAF/OAC, Italy)

In collaboration with: A. Pellizzoni, S. Loru, M. N. Iacolina, M. Marongiu, S. Righini, M. Cardillo, A. Giuliani, S. Mulas, G. Murtas, D. Simeone...

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

SRT Location

San Basilio, Sardinia Lat. 39°29'34"N - Long. 9°14'42" E, 700 m.a.s.l.

SRT Location

San Basilio, Sardinia Lat. 39°29'34"N - Long. 9°14'42" E, 700 m.a.s.l.

A few words about SRT

- Dish dimension: 64-m diameter
- Active surface
- Frequency range: From 0.3 GHz to 110 GHz
- Visibility DEC: -40°, +90°
- First call ESP: Dec 2015

Radio observations of SNRs

- * High-resolution maps of SNRs are lacking > 5 GHz
- * Single dish and interferometry are complementary
- * SRT maps of W44 and IC443 at 1.5 GHz, 7 GHz and 21.4 GHz

AIMS => to have precise measurements on flux density

=> to better understand the spectral index of SNRs

SRT observations

- * On-The-Fly maps
- * Beam oversampling
- * Automatic RFI rejection

* Automatic baseline subtraction

Pixel size about 1/4 HPBW

Single Dish Imager (SDI software)

=> Accurate flux density measurements and flux errors

W44 flux at 1.4 GHz ?

* Discrepancies in the literature (see Castelletti et al. 2007)

Frequency	Scaled flux	References
(MHz)	density (Jy)	
1390	173 ± 35	Westerhout (1958)
1400	188 ± 23	Pauliny-Toth et al. (1966)
1400	173 ± 26	Kellermann et al. (1969)
1410	236 ± 47	Scheuer (1963)
1410	236 ± 35	Beard & Kerr (1969)
1414	274.7 ± 0.4	Altenhoff et al. (1970)
1420	180 ± 36^{c}	Leslie (1960)
1442	210 ± 20	Giacani et al. (1997)
1442	300 ± 7	Castelletti et al. (2007)

W44 flux at 1.4 GHz ?

* Discrepancies in the literature (see Castelletti et al. 2007)

	Frequency (MHz)	Scaled flux density (Jy)	References
=>	1390	173 ± 35	Westerhout (1958)
=>	1400	188 ± 23	Pauliny-Toth et al. (1966)
	1400	173 ± 26	Kellermann et al. (1969)
=>	1410	236 ± 47	Scheuer (1963)
=>	1410	236 ± 35	Beard & Kerr (1969)
	1414	274.7 ± 0.4	Altenhoff et al. (1970)
=>	1420	180 ± 36^{c}	Leslie (1960)
=>	1442	210 ± 20	Giacani et al. (1997)
	1442	300 ± 7	Castelletti et al. (2007)

SRT: 1550...... 214 +/- 6 Jy Egron et al. (submitted to MNRAS)

Single-dish observations of W44

* Effelsberg at 4.9 GHz (beam: 2.6') * SRT at 7 GHz (beam: 2.7') * Urumqi at 4.8 GHz (beam: 9.5')

SRT and VLA maps of W44

* Advantage VLA => great details in the morphology (see Castelletti et al. 2007: obs at 324 MHz)

*Advantage SRT => accurate flux measurements at 1.5 and 7 GHz

Single-dish observations of IC443

IC443 at 1.5 and 7 GHz with SRT

F = 131 +/- 4 Jy at 1.5 GHz

comparison with flux values at 1.4 GHz

Frequency (MHz)	Scaled flux density (Jy)	References
1390	177 ± 15	Westerhout (1958)
1400	170 ± 20^{c}	Hogg (1964)
=>1400	146 ± 18	Wanner (1961)
=>1410	131 ± 13	Milne & Hill (1969)
=>1419	130 ± 13	Green (1986)
1420	160 ± 16^{c}	Hagen et al. (1955)
=>1420	138 ± 15	Hill (1972)

Extract from Castelletti et al. 2011

F = 69 + - 3 Jy at 7 GHzconsistent with Dickel 1971 F = 70 + - 15 Jyat 6.6 GHz

SRT versus VLA/Arecibo

* Flux density at 1.5 and 7 GHz consistent with the literature

* Comparison of SRT map at 7 GHz with VLA and Arecibo at 1.4 GHz

(Lee +2008)

100

80

60

y/Beam

Work in progress...

* High-resolution maps with - K-band receiver (18-26 GHz) - S-band receiver (3-4.5 GHz; under construction)

> * W44 at 21.4 GHz (Loru et al. in prep)

Declination

Right ascension

* W44 at 4.4 GHz (lacolina et al. in prep)

Conclusions

* High-quality maps => single-dish capabilities at 1.5, 4.4, 7, 21.4 GHz

* Flux measurements with precise error : 3% at 1.5 GHz, 5% at 7 GHz
=> integrated and local flux density

* Map of spectral index (talk A. Pellizzoni)

* Paper submitted to MNRAS (Egron et al.)

=> next steps : Analysis of spectral lines (Roach2 backend) Polarization maps Maps in Q-band (33 - 50 GHz)

Thank you for your attention !

SNR W44

* Comparison between SRT (64m) and Medicina (32m)

Early Science Program

* First call for SRT proposals in Dec 2015

* Small number of large programs in shared-risk (15) <u>http://www.srt.inaf.it/astronomers/early-science-program-FEB-2016/</u>

* A program dedicated to imaging of supernova remnants (110h)

* Observations: 01 February - 31 July 2016