The origin of gamma rays in RXJ1713.7-3946 and the other shell like SNRs; Evidence for γ -ray production dominated by the hadronic process

Yasuo Fukui Nagoya University

IAU331 "SN1987A, 30 yrs later" La Reunion, February 20-24, 2017

NANTEN 2nd survey of GMCs in the LMC (Fukui et al. 2008)

- Contours: CO J=1-0
- 270 GMCs
- X_{LMC} ~ 9 × 10²⁰ cm⁻² / [K km s⁻¹] ~ 3 X_G is used (Mizuno et al. 2001)) (X= N(H₂)/ I_{CO} = M/L_{CO})

Mass : $6 \times 10^4 - 6 \times 10^6$ Mo Size (radius) : 30 - 150 pc Line width (FWHM) : 3 - 17 km s⁻¹

Separation of L- & D-components

Fuku et al. 2017, soon appear in astroph

Previous Study: Tidal interaction between the LMC & SMC

Bekki & Chiba 07

Previous Study: Tidal interaction between the LMC & SMC

observations (image HI, contour CO)

simulation(gas density)

Bekki, Chiba 2007

Interstellar molecular clouds and gamma-rays The origin of the cosmic rays is SNR?- Yes.

Interstellar Medium ISM

- Molecular clouds: dense neutral gas H₂ (2.6mm CO)
 - density 10³ cm⁻³ or higher, Tk=10-20K
- Atomic clouds: dense atomic gas HI (21cm HI)
 - density 1-100 cm-3, Ts=20-100K

Gamma-rays produced by

- 1) Hadronic scenario:
 - cosmic ray CR proton ISM proton reaction, neutral pions decay into gamma rays
- 2) Leptonic scenario
 - CR electrons, Inverse Compton (IC) process, CMB etc.

Gamma-rays (0.1GeV-100TeV) observed by HESS, MAGIC, VERITAS, Fermi, AGILE and CTA[2016-]

SNRs emitting gamma-rays

Courtesy H. Tajima

Four TeV Gamma-ray SNRs

- 4 TeV gamma ray SNRs age 2000yrs
- They are interacting with ISM

NANTEN & NANTEN2

@Las Campanas, alt.2400m

RX J1713.7-3946: ¹²CO(*J*=1-0) with X-rays

Galactic Latitude (Degree)

SNR G347.3-0.5 (RXJ1713.7-3946)

- Shell-like structure: similar with X-rays
- No significant variation of spectrum index across the regions
- spatial correlation with surrounding molecular gas

RX J1713.7-3946

Fukui et al. 2012, ApJ, 746, 82

Dark HI SE Cloud (Self-Absorption)

HI becomes dark at higher density

Goldsmith et al. 2007

ISM protons in RX J1713.7-3946

ISM protons in RX J1713.7-3946 Support hadronic scenario

Shock propagation into dense gas

Inoue, Yamazaki, Inutsuka, Fukui 2012, ApJ, 744, 71

MHD simulations of shock-cloud interaction

density vs. magnetic field

Inoue+ 2010

density vs. magnetic field [sub-pc scale]

SNR RXJ1713 summary

Gamma-rays corresponds well with interstellar H nuclei, CO+HI, allowing detailed identification of target protons in a density range from 100 to 10³ cm⁻ ³. The gas is highly clumpy.

Wp ~ 10⁴⁸erg for 100cm⁻³: gamma rays ~ Wp x ISM

- Hadronic origin is consistent with the spatial correspondence
- Careful analysis of dense atomic and molecular gas, HI and CO, yields total ISM protons
- Shock-cloud interaction causes gas turbulence and strong B field up to mG

TeV gamma-ray SNR RX J0852.0-4622

RX J0852: CO distribution (interact with the SNR)

NANTEN2 12CO(J=1-0)

■ CO vs. X-rays

good spatial correspondence between the CO and X-rays

Interacting with the SNR

image: CO(1-0) I.I. (Vlsr: 24-33 km/s) contours: X-ray (1-5 keV)

RX J0852: HI distribution (interact with the SNR)

ATCA & Parkes HI

■ HI vs. X-rays

HI wind bubble at same velocity in CO

ISM cavity created by the progenitor

Image: HI I. I. (Vlsr: 28-34 km/s) contours: X-ray (1-5 keV)

TeV gamma-ray SNR RX J0852 ISM Proton Column Density Distributions Fukui et al. 2013, in prep.

Vela Jr. total ISM protons & TeV γ-rays (optically thick HI corrected)

(left) Image: Total interstellar proton column density, contours: TeV γ-rays (Aharonian+07) (Right) Azimuthal plots

Fukui, Sano+15 in prep.

RCW 86: γ-ray and ISM (preliminary)

Images: (left) ATCA HI integrated intensity, (middle) XMM-Newton X-ray three color, (right) H.E.S.S. TeV Gamma-rays Contours: H.E.S.S. TeV Gamma-rays (lowest: 75 excess counts, interval: 10 excess counts)

- TeV Gamma-ray intensity increases around the inner wall of the HI cavity.
- Diffuse HI gas (green) is well correlated with the TeV gamma-ray peaks.
- In the northeast region, the peak of synchrotron X-ray is anti-correlated with the TeV gamma-ray peak.

Sano+16b in prep.

Magellanic SNR N132D (Mopra CO1-0, Sano+15b)

Image: (a) Chandra X-rays, (b) Mopra CO 1-0 (MAGMA: Wong+11) Contours: Chandra X-rays (0.5-7.0 keV)

(a) Chandra X-rays

Red 0.5_{-1} 1.2-2.0 keV Green ...

30 Dor C

- Superbubble in 30 Dor
- Non-thermal X-rays
- TeV Gamma-rays
- Containing young

SNR

(Age: 2.2-4.9 kyr, Kavanagh+14)

(c) ATCA & Parkes HI

Comparison of young SNRs

	RXJ0852.0 - 4622ª	RXJ1713.7 - 3946 ^b	HESSJ1731 - 347°
Distance (kpc)	0.7	1	5.2 ^d
Radius (pc)	13	9	22
Age (years)	1700	1600	4000
Atomic proton mass $(10^4 M_{\odot})$	1	1	1.3
Molecular proton mass $(10^4 M_{\odot})$	0.1	1	5.1
Total proton mass $(10^4 M_{\odot})$	1.1	2	6.4
Average density (cm ⁻³)	40	100	60
L_{γ} (1–10 TeV) (10 ³⁴ erg s ⁻¹)	0.63	0.81	2.8
Total CR proton energy	${\sim}10^{48}$	${\sim}10^{48}$	${\sim}10^{49}$

Table 1 A Comparison of RX J0852.0-4622, RX J1713.7-3946, and HESS J1731-347

If the γ -rays are produced predominantly by the hadronic process,

- Total CR protons energy $10^{48} 10^{49}$ erg
- CR acceleration efficiency 0.1% 1%

W44 Fermi/AGILE results pion bump, but low resolution, for lower energy CRs

W44 CO and HI Yoshiike et al. 2017

IC443 CO and HI Yoshiike et al. 2017

Contour CO

Escaping CR Uchiyama et al. 2012

Summary

- TeV gamma ray SNRs: hadonic dominant, target both H2 and HI
- GeV gamma ray SNRs: hadronic with target H2
- Target should be directly identified, HI plus CO ---for high density, shock-cloud interaction B field amplified — CR electrons decrease by synchrotron loss then, hadronic dominates
- CR energies 10^48-10^49 erg, secure lower limits
- Escaping, low filling factor of target ISM
- SNRs are the most important CR source in the Galaxy

CTA will provide excellent images to demonstrate the correspondence soon