Now and the Future of SNR Broadband Models Linking with Progenitor and Supernova Simulations

> Herman S.-H. Lee Department of Astronomy Kyoto University

D. Patnaude, P. Slane, D. Ellison, J. Raymond, S. Nagataki, D. Castro, ...

IAUS 331 - The 30th Anniversary of SN 1987A

The Art of Broadband SNR Modeling

- Nowadays, broadband models must satisfy many constraints from observations
 - ★ Multi-wavelength spectra
 - Multi-wavelength morphology
 - **★** Time evolution, dynamical information
 - ★ Thermal as well as non-thermal properties
 - ★ All different combinations of the above! (spectral image, spectral evolution etc)

Also have to meet criteria from complex plasma physics and simulations

A few parameters, from yet incomplete physical understandings

Common Ingredients of a SNR Broadband Model

- ★ (Magneto-) hydrodynamics
- ★ Progenitor, supernova and explosive nucleosynthesis models
- ★ Picture for the surrounding environment
- ★ Various implementations of Diffusive Shock Acceleration (DSA)
- **★** Time and space-dependent micro-physical processes
 - Non-equilibrium ionization, charge exchange,
 - Shock heating, temperature equilibration
 - Radiative cooling/heating
 - Magnetic turbulence generation and dissipation, feedbacks to DSA

* Thermal and non-thermal emission calculations to confront data in various forms

Undisturbed ISM and/or stellar wind Forward Shock

Shocked

olasma

Reverse **Cold ejecta** material shoc Dust

Components of an SNR HTTP://CHANDRA.HARVARD.EDU

TYCHO'S SUPERNOVA REMNANT

(b) HST

cut 01

cut 02

cut 03

IR/optical lines e.g. Hα (charge exchange) Also radiative shocks

Infrared emission Hot dust Non-thermal X-ray Synchrotron radiation Ultra-relativistic electrons

> **Thermal X-ray** Very hot plasma (~10⁸ K) Shocked debris of exploded star

Lights' from an SNR http://chandra.harvard.edu

TYCHO'S SUPERN REMNAN

 $0^{h} 25^{m} 52$

Infrared

Ligh

Hot

cut 03

6

HTTP://CHANDRA.HARVARD.EDU

TYCHO'S SUPERN REMNI

cut 02 cut 03 cut 04 cu

(b) HST

cut 01

Infrar F

Gamma-ray emission Sites of particle acceleration Origin of Cosmic rays?

• •

HILP.// CHANDRA.HARVARD.EDU

SNRs as origin of cosmic rays in galaxies

SNRs as origin of cosmic rays in galaxies

Cosmic Ray Astronomy ain't gonna work bro

p,e

1st alternative: gamma-rays They don't bend much Not much interaction in Galactic scale

Credit: Image: GALEX, JPL-Caltech, NASA; Drawing: APS/Alan Stonebraker

Origins of y-ray emission

HL, Slane+ 2013 on SNR Vela Jr.

 π^{0} decay CR ion + gas $\rightarrow \pi^{0}$ Flat'ish spectrum Requires dense gas

"hadronic"

Inverse-Compton scatterings CR electron + seed photons $\rightarrow \gamma$ -ray Hard spectrum Requires: low B-field (avoid synch loss) low density (suppress π^0)

Non-thermal bremsstrahlung

CR electron + gas $\rightarrow \gamma$ -ray Same spectral index as CR Requires: low B-field (synch loss) dense gas (target) high e/p (suppress π^0)

Origins of y-ray emission

HL, Slane+ 2013 on SNR Vela Jr.

How particles get accelerated

(Younger) SNRs have strong non-relativistic collisionless shocks

→ Diffusive Shock Acceleration (DSA) [aka Fermi 1st order acceleration]

- 'Diffuse' by elastic scattering w/ magnetic turbulence on both sides of shock
- Particles repeatedly crossing the shock front
- Each time, fractional momentum gain $\triangle p/p \sim (velocity difference)/(speed of light)$
- \rightarrow Young SNRs: cosmic ray energy easily > 10% of E_{SN} (e.g. Ellison+ 05)

Nonlinear diffusive shock acceleration

Efficient particle acceleration leads to funny consequences, e.g., highly modified shock flow, 'concave' CR spectrum, low shock temperature, efficiently amplified B-field, ...

14

Numerical Approaches for SNRs

Particle-in-cell

First principles Few or no parameter/approx

Hybrid

Computational cost Limited dynamical ranges Difficult for multi-λ model

Caprioli & Spitkovsky '14

Monte Carlo

Semi-analytic

Global HD/MHD

with microphysics

More phenomenological (parametric) plasma physics

P. Slane

Large dynamical ranges Constrained by multi-λ observations

The CR-hydro-NEI (ChN) Code

S.-H. Lee, D. Patnaude, D. Ellison, P. Slane, S. Nagataki (J. Raymond, D. Castro, others…)

- Nonlinear DSA physics (HL, Ellison & Nagataki 2012)
 - **CR** back-pressure \rightarrow feedback to shock structure, vice versa
 - Particle escape
 - Magnetic turbulence generation + wave damping
 - \rightarrow Magnetic field amplification (MFA)
 - $\rightarrow D_x(x,p,t)$ calculated from self-generated B-field
- Non-thermal radio-TeV emission in (x,t) (HL, Slane+ 2013, Slane, HL+ 2014, ...)
- Self-consistent calculation of thermal X-ray line emission
 - Non-equilibrium ionization, fully time and space-dependent (Patnaude+ 2009)
 - ✤ Temperature equilibration —> T_e(x,t) and T_i(x,t) (HL, Patnaude+ 2014)
- Propagation of escaping CRs and interaction w/ clouds (HL+ 2008, Ellison+ 2012)
- (Re-)acceleration of pre-existing non-thermal particles
- **Fast radiative shocks in dense medium** (HL, Patnaude, Raymond+ 2015)
- **Ejecta from SN nucleosynthesis models** (HL, Patnaude+ 2014)

Decipher Multi- λ emission by CR-hydro-NEI code Diversity of SNR γ -ray Origin

e.g., Lee+ 2008 to now; Slane, Lee+ 2014; Castro+ 2012

First step Get the size right (dynamics)

Slane, HL et al. (2014) on Tycho's SNR

400

100

200

300

Time (yr)

Then, the all important non-thermal spectrum In <u>some</u> cases, things

HL, Slane+ 2013 on SNR Vela Jr. are not so conclusive...

-5 Non-thermal Synch IC Thermal		Hadronic ^b	Leptonic ^c
Leptonic $-\pi^0$ decay $-\pi^0$ decay (esc)	Input parameters		
⁻⁶ Radio X-ray GeV TeV	d _{SNR} (kpc)	0.74	0.88
-7	$n_0 ({\rm cm}^{-3})$	0.033	0.002^{\dagger}
	$B_0 (\mu G)$	0.5	0.14 [†]
	$dM/dt \ (10^{-6} \ M_{\odot} \ yr^{-1})$		7.5
	$V_{\rm wind} \ ({\rm km \ s^{-1}})$		50
	$\sigma_{ m wind}$		0.02
	K _{ep}	1.5×10^{-4}	0.015
$ \mathbf{S}_{-11} $	$\alpha_{\rm cut}$	0.75	0.50
	$f_{ m FEB}$	0.15	0.12
	$f_{ m alf}$	0.10	1.00
$\frac{1}{2}$ -5 Hadronic \mathbf{A}	Output quantities		
	$R_{\rm FS}$ (pc)	12.7	15.2
	$R_{\rm CD}$ (pc)	10.3	12.5
ତ୍ମି – 7 – 🚺 – –	$V_{\rm FS} ({\rm km}{\rm s}^{-1})$	2130	4700
	$p_{\rm max}(p) ({\rm TeV}/c)$	26.7	5.2
	$p_{\rm max}~(e^-)~({\rm TeV}/c)$	13.3	5.2
	R _{tot}	9.30	4.69
	R _{sub}	3.69	3.99
	$B_2 (\mu G)$	34.1	4.8
	$T_2 (10^8 \text{ K})$	0.16	3.62
	$\epsilon_{\rm acc}$	0.84	0.36
	€esc	0.34	0.12
-15 -10 -5 0 5 \log_{10} (E[GeV])	$\frac{E_{\rm CR}/E_{\rm SN}(f_{\rm SN})}{-}$	0.48	0.14

Hadronic vs leptonic has impact: big difference in E_{CR} , v_{sk} and T, ...

One step further Using "spectral images"

Slane, HL et al. (2014) Tycho's SNR

s⁻¹ keV⁻¹) 10-1 (counts 10-2 Flux Hadronic 10-3 Leptonic Residual (σ) 5 0 -5 0 5 0.5 Energy (keV)

HL, Slane et al. (2013) Vela Jr. SNR

Thermal X-ray can constrain Gamma-ray origin

In young SNRs, thermal X-ray emission *coupled* to broadband emission!

Predicted thermal flux must NOT exceed observed X-ray flux

See also talk by Y. Fukui

Mostly leptonic SNR? Ecr = 0.15 Esn

Powerful constraint of non-thermal origin Thermal X-ray Spectrum

CR-hydro model by Castro+ (2012) on mid-aged CTB109

--> wrong thermal X-ray spectrum

Detailed thermal models for future X-ray spectroscopy

HL+ 2016 25

Thermal X-ray line profiles Crossover of thermal and non-thermal physics!

HL, Patnaude+ (2014)

Bright γ -rays from Middle-aged SNRs

- Many GeV-bright SNRs in our Galaxy found by Fermi, AGILE
- Mostly middle-aged SNRs interacting with molecular clouds
- ★ Evolved, have slow shocks, but bright radio, GeV γ-rays
- **\star** Lots of CR protons, B >> μ G

Fermi LAT collaboration, Science 2013

SNR W44 (Yoshiike+ 2013, 2017)

Radiative shock hydrodynamics with full non-equilibrium ionization (NEI) and cosmic-ray re-acceleration

$3/2 \text{ k}_B \text{ d}T/\text{d}t = -(n_e n_p/n) \wedge + \Gamma + (\kappa/n) \nabla^2 T$

Cooling function

 ★ Follow NEI of 12 elements: H, He, CNO, Ne, Mg, Si, S, Ar, Ca, Fe
 ★ UV/optical continua and lines
 ★ Cooling is fast, close to isochoric

Heating function

- Radiative transfer of strong UV lines and continua
 Absorption, photoionization
- Heating by photoelectrons

(e.g. Gnat & Steinberg 2009)

 Thermal conduction
 ★ Conductivity κ = f κ spitzer
 ★ f = 0.3 for collisionless plasma, hindrance by Bfield

(e.g. Zakamska & Narayan '03, Bale+ '13)

HL, D. Patnaude, J. Raymond+ 2015

Hydrodynamics and Spectral Evolution

29

2.0

The Quest "From engine to remnant"

Q: how well are our knowledge connected?

D. Warren

Full understanding of late-stage stellar evolution requires good communication between stellar evolution, SN and SNR communities

SN Remnants

Betelgeuse

Stars that blow up

T. Takiwaki

Models

Supernovae

Chandra, Fermi

What we see

An Important Application Q: Are current SN models consistent with SNR observations?

Basic method:

Evolve an SN ejecta to its SNR phase

Calculate the emission properties self-consistently with hydro!

Mass coordinate

Separation of Fe-K line centroid between la & CC Broad consistency between SN model and SNR data

Phenomena in multi-dimension

Inhomogeneous CSM

Non-trivial progenitor structure

Asymmetrical SN explosions

Ejecta mixing, fast knots, fingers, bubbles

Other external effects, e.g. B-field obliquity

Highly inhomogeneous ejecta in SNR Challenge to hydro models

Cas A observation Milisavljevic & Fesen '13 Parameters of large-scale anisotropies

Fe-rich Si/S-rich

Piston/Jet	$D_{\rm knot}$	$r_{ m knot}$	Χn	χv	$M_{\rm knot}$	$E_{\rm knot}$
	$(R_{\rm SNR})$	$(R_{\rm SNR})$			(<i>M</i> _☉)	(10 ⁴⁹ erg)
Fe-rich SE	0.15	0.05	100	4.2	0.10	5.0
Fe-rich SW	0.15	0.02	50	4.2	0.0015	0.076
Fe-rich NW	0.15	0.06	50	4.2	0.10	4.8
Si-rich NE	0.35	0.1	5.0	3.0	0.040	4.2
Si-rich SW	0.35	0.1	1.2	3.0	0.0091	1.0

3-D hydro S. Orlando+ 2016

shocked ejecta

High-resolution 3-D hydro model 'Large-scale' Si/S and Fe-rich knots in SN ejecta can broadly reproduce observed structure (Si/S-Fe overturning, rings etc)

Source of perturbations = convection plumes in progenitor?

Summary

- We have reviewed on the general methodology and capabilities of modern broadband models for SNRs
- Current limitations mainly from yet incompletely understood physics
 - Rely on rich MW observational data AND breakthroughs from first principle simulations to remove "free" parameters
- Our future is on progenitor-SN-SNR connection
 - More meetings like this one is necessary
 - Bigger picture, less ambiguous, more fun