Incidence of stellar rotation on the explosion mechanism of massive stars

Rémi Kazeroni (CEA/MPA) Thierry Foglizzo (CEA), Jérôme Guilet (MPA)

IAUS 331 SN 1987A, 30 years later

La Réunion 20/02/2017

- Hydrodynamical instabilities in collapsing stellar cores
- Dynamical influence of rotation on one-armed instabilities
- Angular momentum budget: from progenitor rotation to pulsar spin

Introduction

Hydrodynamic instabilities

(Blondin & Mezzacappa 2007)

(Hanke+ 2013)

Introduction

A simplified model to investigate SASI

Numerics – parametric study with RAMSES

Radii ratio: $\mathbf{R} = \mathbf{r_{sh}} / \mathbf{r_{*}}$ (e.g. $\mathbf{r_{sh}} = 150$ km, $\mathbf{r_{*}} = 50$ km)

2D cylindrical domain equatorial plane

Outline of the talk

- Hydrodynamical instabilities in collapsing cores
- Dynamical influence of rotation on one-armed instabilities
- Angular momentum budget: from progenitor rotation to pulsar spin

Shock dynamics

Pulsar spin at birth

SASI

(Blondin & Mezzacappa 2007)

 $j = 10^{15} \text{ cm}^2/\text{s}$ or $P_0 \approx 6 \text{ ms}$ "Slow" rotating progenitor

→ Natal pulsar spin distribution: from ~10 ms to several 100 ms at birth. → stellar evolution favours: j ~ 10^{15} cm²/s (P₀ ≈ 6 ms) (*e.g. Heger+ 2005*).

What about intermediate rotation rates?

Low-T/|W| (corotation instability)

(Takiwaki+ 2016)

j = 4.10¹⁶ cm²/s or $P_0 \approx 0.15$ ms "Fast" rotating progenitor

Shock dynamics

R = 1.67
$$j = 4.10^{15} \text{ cm}^2/\text{s}$$

 $P_0 \approx 1.5 \text{ ms}$

A parametric study (R)

Shock dynamics

R = 1.67
$$j = 4.10^{15} \text{ cm}^2/\text{s}$$

 $P_0 \approx 1.5 \text{ ms}$

SASI, m=2

Shock dynamics

A parametric study (R)

Shock dynamics

SASI, m=1

Shock dynamics

A parametric study (R)

Shock dynamics

Low-T/|W|, m=1

Outline of the talk

- Hydrodynamical instabilities in collapsing cores
- Dynamical influence of rotation on one-armed instabilities
- Angular momentum budget: from progenitor rotation to pulsar spin

Angular momentum redistribution

A Neutron Star (NS) may be spun up without stellar rotation!

Shallow water experiment

(Foglizzo+ 2012, 2015)

What about rotating progenitors?

• NS spin-down? Counter-rotating NS? (Blondin & Mezzacappa 2007)

Analytical estimate

Conclusion

Covering the parameter space

Kazeroni, Guilet & Foglizzo 2017, arXiv:1701.07029

- Rotation does not always increase the amplitude of the SASI spiral mode.
- Strong spiral mode associated to a corotation instability.
- NS spin-up and spin-down are possible if $f_{\rm core} \lesssim 100$ Hz.
- The spin-down is much less efficient when a corotation instability develops.

Thanks!