SN1987A – 30 yr later, IAU 331, La Reunion, France, February 20, 2017

Explosion and Nucleosynthesis of Massive and Very Massive Stars

Alexander Heger (Monash) Stan Woosley (UCSC) Ken Chen (NAOJ) Tyrone Woods (Monash University) Bernhard Müller (Belfast/Monash) Pamela Vo (UMN) James Grimmet (Monash) Conrad Chan (Monash)

A Rotating Single Star Model for 87A

18 solar mass star

Initial rotation ~235 km/s

(Slide from 20 yr after meeting)

(Woosley et al. 2007)

Surface N/C enrichment

Ejected 0.1 - 0.2 solar at RSG-BSG transition

NS remnant with P ~13 ms

Fallback large because BSG

Accretion currently inhibited by the propeller mechanism? (Eksi, Hernquist, Narayan 2005)

SN 1987A

Binary star models can reproduce HRD position and surface/nebula abundances simultaneously

(model inspired by Podsiadlowski et al.)

۵

0

0

14

12

10

8

6

N/C

ο

٥

 $15\,M_{\odot}$

 $16\,M_{\odot}$

 $17\,M_{\odot}$

Overview

- Massive stars
 Very massive stars
 Supernovae mechanisms
- Notes on Nucleosynthesis

Evolution of Center for Different Initial Masses

Nuclear burning stages

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
н	He	¹⁴ N	0.02	10 ⁷	$4 H \rightarrow 4He$
He 🖌	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He⁴ → ¹²C ¹²C(α,γ)¹6O
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	²⁰ Ne(γ,α) ¹⁶ O ²⁰ Ne(α,γ) ²⁴ Mg
0	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si,S	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

The Death of the Stars

Explosive Nucleosynthesis

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (s)	Main Reaction
Innermost ejecta	<i>r</i> -process? <i>vp</i> -process	-	>10?	1	(n,γ), β ⁻
Si, O	⁵⁶ Ni	iron group	>4	0.1	(α,γ)
Ο	Si, S	CI, Ar, K, Ca	3 - 4	1	¹⁶ O + ¹⁶ O
O, Ne	O, Mg, Ne	Na, Al, P	2 - 3	5	(γ,α)
		<i>p</i> -process ¹¹ B, ¹⁹ F, ¹³⁸ La, ¹⁸⁰ Ta	2 - 3	5	(ɣ,n)
		<i>v</i> -process		5	(v, v'), (v, e [_])

Explosive Nucleosynthesis contribution

Islands of SN and BH Production

(Woosley 2012, priv. com.)

O'Connor and Ott (2011)

Sensitivity of Structure to Initial Mass

Small changes in initial mass can result in large changes in progenitor structure

Signatures of Stellar Structure?

Supernova Progenitor Masses

(Nomoto 2002, priv. com.)

How to Explode **Big Stars** Big

How else can massive stars explode?

- 1. black hole forms inside the collapsing star
- 2. The infalling matter forms and accretion disk
- 3. The accretion disk releases gravitational energy (up to 42.3% of rest mass for Kerr BH)
- 4. Part of the released energy or winds off the hot disk explode the star

Magnetars

- 1. Rapidly rotating magnetized neutron star forms during core collapse
- 2. Magnetic fields efficiently convert rotational energy into explosion energy
- 3. Super-massive NS may collapse and make disk
- 4. Can this be the default case for SN?
- 5. Will jets be a common feature of this?
- (Bildsten, Woosley, ...)

3D magnetar-powered supernova

Fates...

The Overall Picture

initial mass (solar masses)

metallicity (roughly logarithmic scale)

Low-Mass Core Collapse Supernovae

The Lowest Mass Core Collapse SNe

Detailed evolution models through end of evolution.

Similar results as Polearends+ (2007) but much reduced regime for ECSN and no SN Type 1.5 regime.

(Doherty+ also lays out a CO(Ne) transition regime for WDs, but this is not relevant to this talk)

Final Evolution and Outcomes

- A variety of different of different outcomes due to sequence of degenerate central and shell nuclear burning phases.
- Off-centre ignition of shell burning can lead to a flame burning inward, e.g., NeO shell.
- Silicon may ignite in a *flash* that can become hydrodynamic and eject the outer layers of the star

Supernovae from 10 $\rm M_{\odot}$ Star

SN light curve from pre-SN silicon flash – faint Type IIp SN – about 400 days before final core collapse SN light curve from final corecollapse – bright Type IIn supernova – due to pre-SN mass ejection

SN Mass Limit as Function of Metallicity

Nucleosynthesis in Massive Stars

Nucleosynthesis Yields

- **3 Key Ingredients:**
 - Hydrostatic and Explosive Nucleosynthesis
 - Hydrodynamic Instabilities during SN ("Mixing")
 - What is eject, what goes into Remnant ("Fallback")

Pop III Nucleosynthesis

Mg yield (ejecta mass fraction)

Heger & Woosley (2010)

Mixing in 25 M_O Stars

Growth of Rayleigh-Taylor instabilities

Interaction of instabilities (mixing) and fallback determines nucleosynthesis yields

➔ Pop III stars show much less mixing than modern Pop I stars due to their compact hydrogen envelope

Simulations: Candace Joggerst (UCSC/LANL T-2)

Fallback and Remnants

➔ Pop III stars show much more fallback than modern Pop I stars due to their compact hydrogen envelope

(Zhang, Woosley, Heger 2007)

Supernovae, Nucleosynthesis, & Mixing

Nucleosynthesis **Pair-Instability** Supernovae

Problem

Pair-Instability Supernovae do not reproduce the abundances as observed in very metal poor halo stars!

Conclusions

- A wide range of SN progenitor masses may explode, with varying explosion mechanism
- Supernova nucleosynthesis may be best constraint by abundance patterns from UMP stars
- Understanding "mixing" processes inside stars, remains a key priority, next to binary evolution, magnetic fields, and rotation
- Statistical comparisons of models to observations are necessary for quantitative constraints on pre-SN models

