Pleasantness Review* Department of Physics, Technion, Israel

Jets in supernovae and supernova remnants La Réunion Island 2017 Noam Soker

Collaborators: Aldana Grichener, Ealeal Bear, Avishai Gilkis

•Dictionary translation of my name from Hebrew to English (real!): Noam = Pleasantness Soker = Review

JETS

See review Soker, N., 2016, New Astronomy Review 75, 1 (arXiv:160502672):

"The jet feedback mechanism (JFM) in stars, galaxies and clusters (a review)"

A long summary

I think that all core collapse supernovae are exploded by jets operating in a negative jet feedback mechanism

See review Soker, N., 2016, New Astronomy Review 75, 1 (arXiv:160502672):

"The jet feedback mechanism (JFM) in stars, galaxies and clusters (a review)"

<u>A note</u>

The formation of a magnetar would be accompanied by jets that carry more energy than the magnetar

Soker, N. 2016, New Astronomy, 47, 88 (paper accepted to the Journal before is was accepted by astro-ph)

Soker, N. 2017, accepted by the desk of the referee (arXiv:1612.01912)

The two most promising scenarios to explode supernovae:

Both operate in a negative feedback mechanism

The fixed axis

scenario

The jittering jets scenario

Property	Jittering jets scenario	Fixed axis scenario	
Source of	Binary interaction	Binary interaction	
angular momentum	and/or instabilities		
Axis of jets	Might jitter	Fixed in direction	
Demands	(1) Violent instabilities	(1) Almost all massive stars	
	at collapse	are non-Jsolated, mostly	
	(2) Accretion belts can	through common envelope	
	launch jets	interaction	
Black hole formation	Inefficient JFM (because	Inefficient JFM	
	of well collimated jets)	or Jsolated stars	
Failed CCSNe	Do not exist	From Jsolated stars	
Super energetic CCSNe	Inefficient JFM	Inefficient JFM	
and gamma ray bursts	and late accretion	and late accretion	
Implications	All massive stars in	(1) All CCSNe come from strongly	
	all masses explode	interacting binary systems	
		(2) Bipolar CSM is common	
Supporting observations	Multiple ears	(1) Bipolar CSM in some	
	in some SNRs	SNRs (e.g., SN 1987A)	
		(2) Many type Ib and Ic	
		CCSNe explode with energies	
		as of type II CCSNe	
Required calculations	3D magneto hydrodynamics	Population synthesis of	
	simulations of CCSNe	common envelope evolution	
	with very high resolutions	of CCSN progenitors	

Soker, N. 2017, accepted for publication by astro-ph (arXiv:1702.03451)

The two most promising scenarios to explode supernovae

Property	Jittering jets scenario	Fixed axis scenario	
Source of	Binary interaction	Binary interaction	
angular momentum	and/or instabilities		
Axis of jets	Might jitter	Fixed in direction	
Demands	(1) Violent instabilities	(1) Almost all massive stars	
	at collapse	are non-Jsolated, mostly	
	(2) Accretion belts can	through common envelope	
	launch jets	interaction	
Black hole formation	Inefficient JFM (because	Inefficient JFM	
	of well collimated jets)	or Jsolated stars	
Failed CCSNe	Do not exist	From Jsolated stars	
Super energetic CCSNe	Inefficient JFM	Inefficient JFM	
and gamma ray bursts	and late accretion	and late accretion	
Implications	All massive stars in	(1) All CCSNe come from strongly	
	all masses explode	interacting binary systems	
		(2) Bipolar CSM is common	
Supporting observations	Multiple ears	(1) Bipolar CSM in some	
	in some SNRs	SNRs (e.g., SN 1987A)	
		(2) Many type Ib and Ic	
		CCSNe explode with energies	
		as of type II CCSNe	
Required calculations	3D magneto hydrodynamics	Population synthesis of	
	simulations of CCSNe	common envelope evolution	
	with very high resolutions	of CCSN progenitors	

Soker, N. 2017, accepted for publication by astro-ph (arXiv:1702.03451)

The Necklace planetary nebula (Form Romano Corradi et al. 2011): A binary central star with P=1.16 days.

Clumpy ring

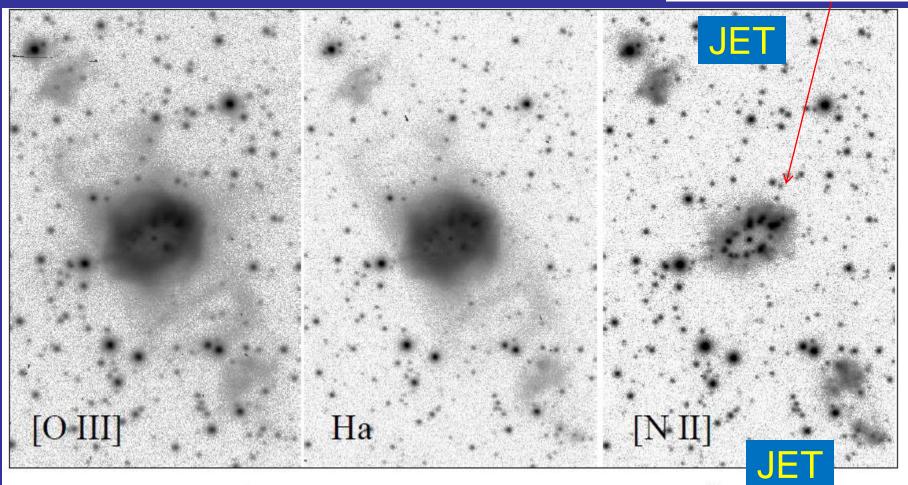


Figure 1. The NOT images of IPHASXJ194359.5+170901 in a log intensity scale. The field of view is $70'' \times 110''$ in each frame. North is up and East is left.

The Necklace planetary nebula (Form Romano Corradi et al. 2011): A binary central star with P=1.16 days.

Clumpy ring

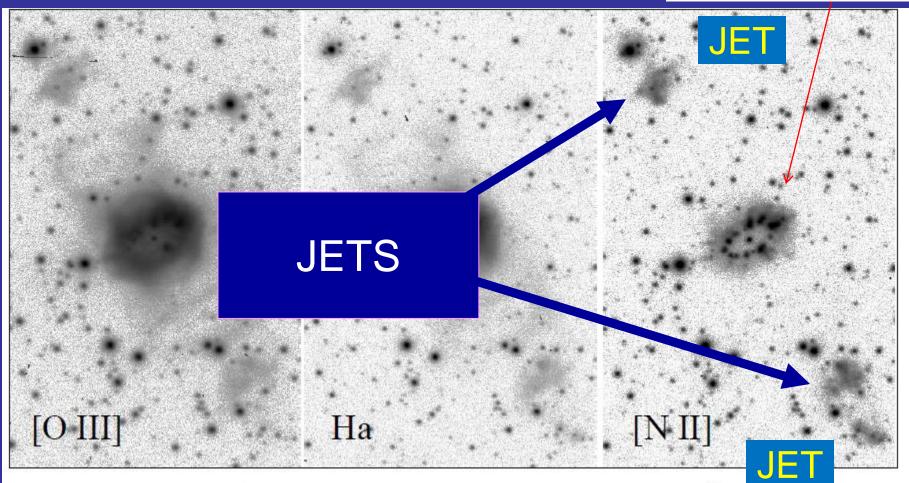
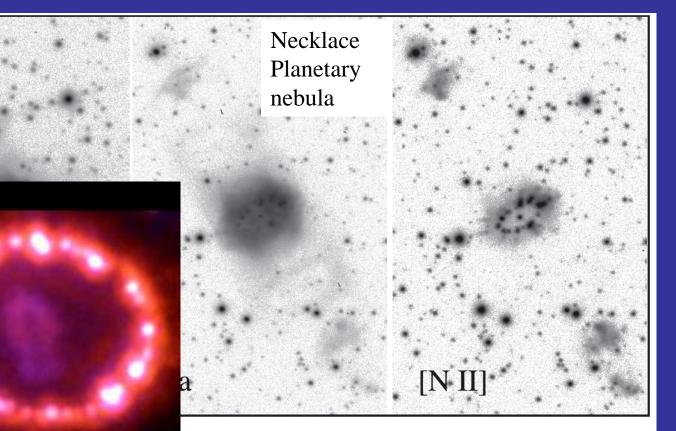
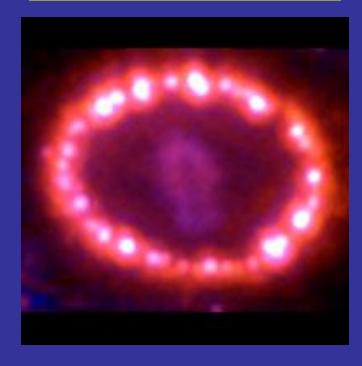



Figure 1. The NOT images of IPHASXJ194359.5+170901 in a log intensity scale. The field of view is $70'' \times 110''$ in each frame. North is up and East is left.

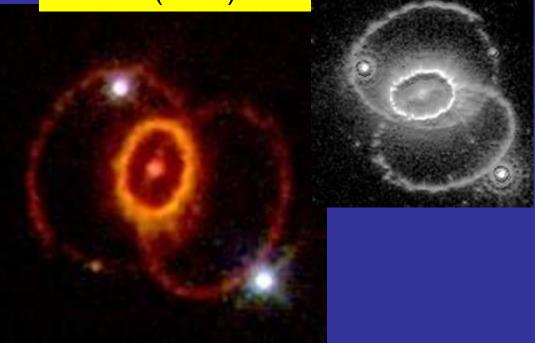
An equatorial dense and clumpy ring

a log intensity scale. The field of view is $70 \times 110 \operatorname{arcsec}^2$ in each frame. North is up and east

SN 1987A Supernova remnant


Inner ring in

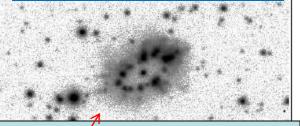
2004 (HST)



MyCn 18 Planetary nebula Supernova 1987A evolution (Philipp Podsiadlowski et al.) and the rings (Soker et al.) require binary merger.

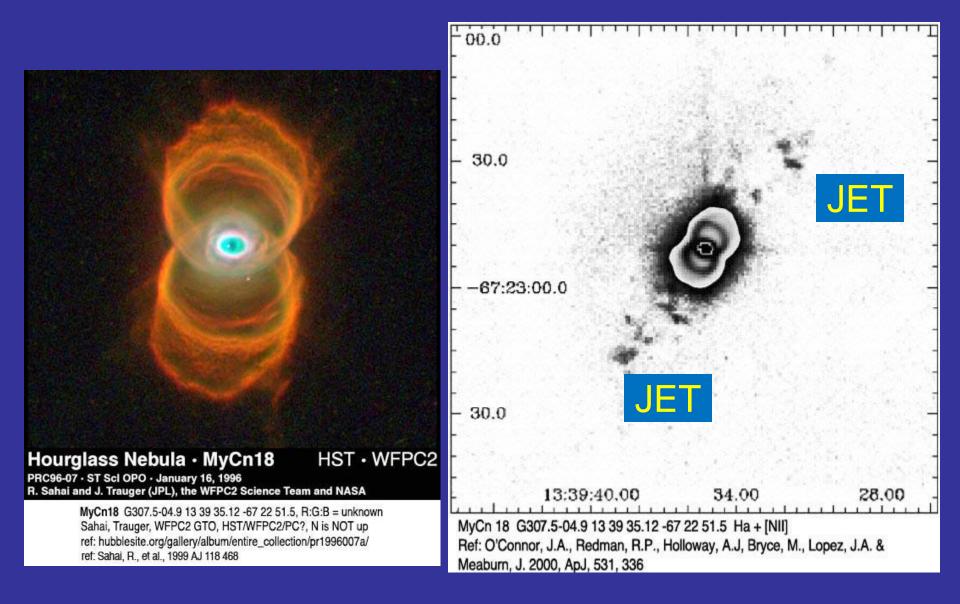
Inner ring in 2004 (HST)

The 3 rings in 1994 (HST)

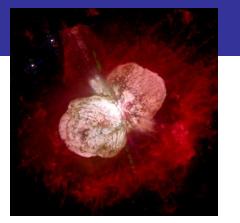


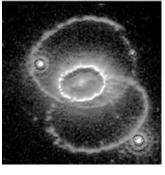
Eta Carinae

The Necklace planetary nebula A binary central star with P=1.16 days


Hourglass Nebula · MyCn18 HST · WFPC2 PRC96-07 · ST Scl OPO · January 16, 1996

PRC96-07 · ST ScI OPO · January 16, 1996 R. Sahai and J. Trauger (JPL), the WFPC2 Science Team and NASA


MyCn18 G307.5-04.9 13 39 35.12 -67 22 51.5, R:G:B = unknown Sahai, Trauger, WFPC2 GTO, HST/WFPC2/PC?, N is NOT up ref: hubblesite.org/gallery/album/entire_collection/pr1996007a/ ref: Sahai, R., et al., 1999 AJ 118 468

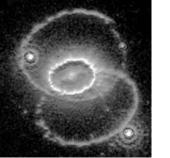
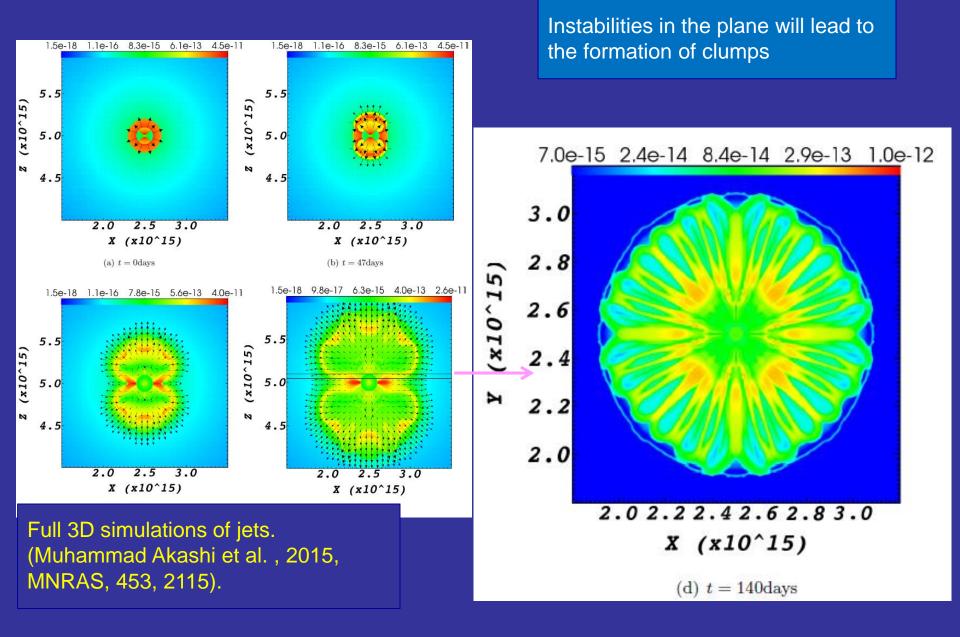
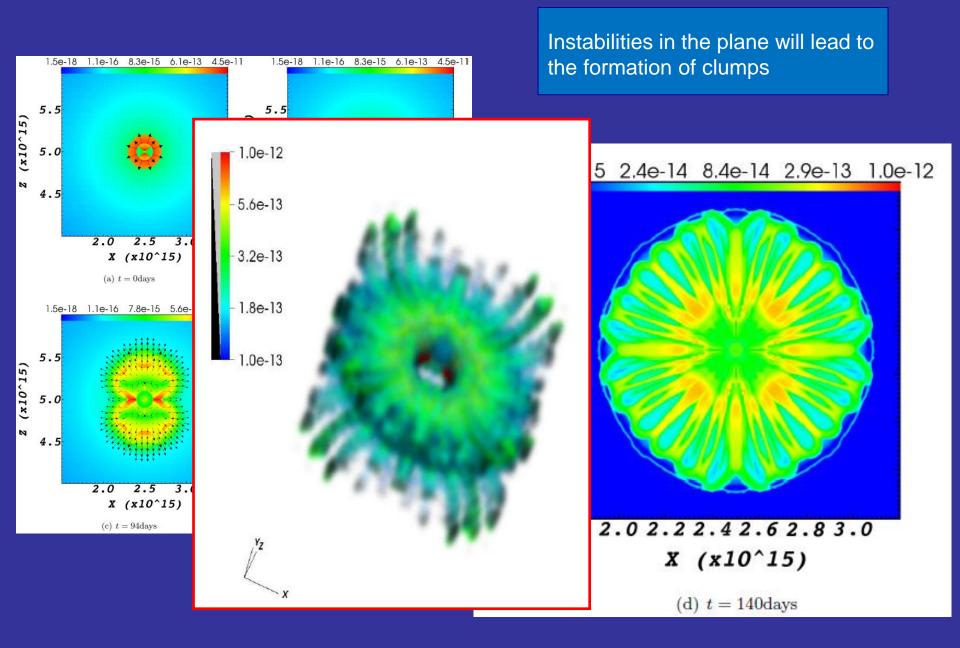

planetary nebulae

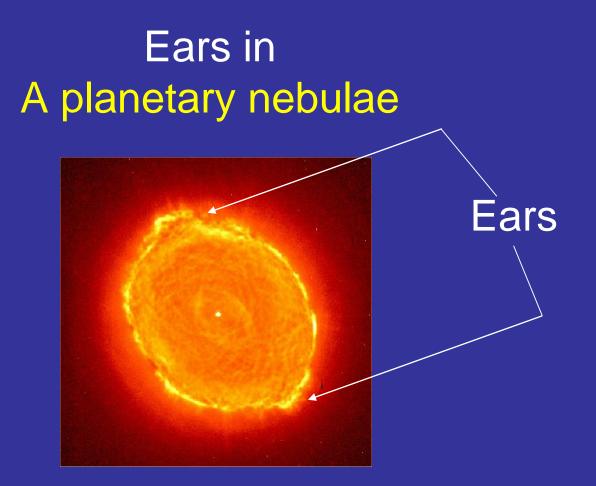
MyCn18 planetary nebula (Form Sahai et al and O'Connor et al.).

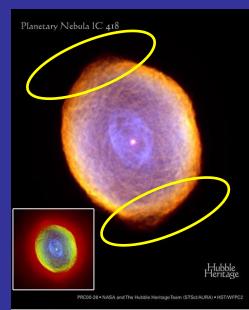
* The outer rings of 1987A and Eta Carinae were shaped by jets.

A main sequence companion accretes mass and launches opposite jets (in some planetary nebulae and in symbiotic nebulae the companion is a WD) * The outer rings of 1987A and Eta Carinae were shaped by jets.

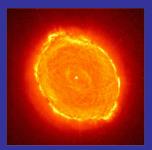
* Inner ring:


Figure 1. The NOT images of IPHASXJ194359.5+170901 in a log intensity scale. The field of view is $70'' \times 110''$ in each frame. North is up and East is left.


To take home: Jets can be active before the explosion

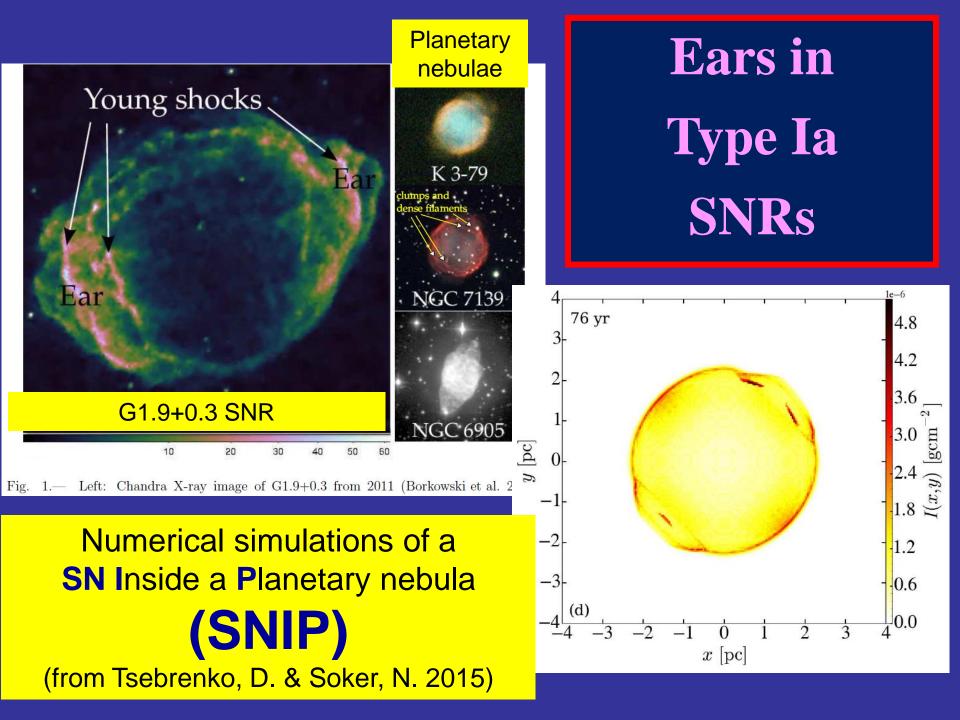
Ears in Supernova remnants


NGC 3242 R:G:B = log[NII]:log[OIII]:linV

NGC 3242 G261.0+32.0 10 24 46.11 -18 38 32.6, R:G:B = log[NII]: log[OIII]: linear V HST/WFPC2/PC1 N is NOT up. credit: Hajian et al (unpublished) HST archives, GO 7501/8390/8773

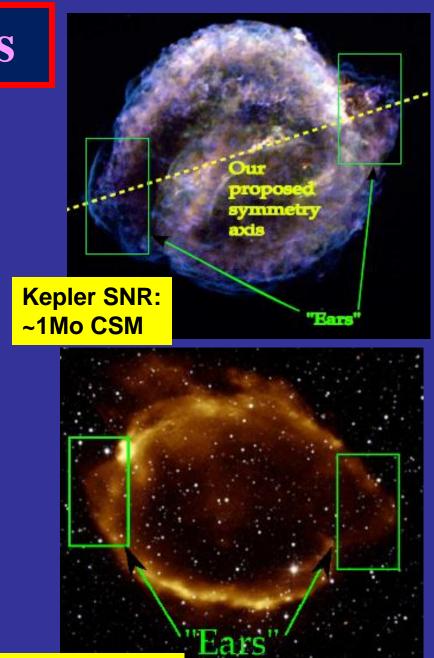
IC 418 G215.2-24.2 05 27 28.20 -12 41 50.3, R:GB = [NII], Ha, [OIII] Hubble Heritage Team, HST/MFPC2/PC?, N is NOT up ref: hubblesite.org/gallery/album/nebula_collection/pr2000028a/ inset: R:GB = deep log[NII]:log [NII]:log[OIII] Hajian, HST archives GO7501

Ears in planetary nebulae


NGC 7139 G104.1+07.9 21 46 08.59 +63 47 29.4, R:G:B = unknown credit: Gert Gottschalk and Sibylle Froehlich/Adam Block/NOAO/AURA/NSF source: http://www.noao.edu/outreach/aop/observers/n7139.html

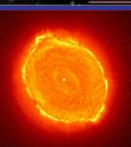
NGC 6563 G358.5-07.3 18 12 02.75 -33 52 07.1, R:G:B=log(Ha+[NII]),both,log[OIII] ref: Schwarz, H.E., Corradi, R.L.M., Melnick, J 1992 A&A Suppl, 96, 23 image files courtesy R Corradi. N is NOT up. See ref for orientation.

IC 2448 G265.7-14.9 09 07 06.28 -69 56 30.7, R:G B = log(NII): log(OII): linear V HST/WFPC2/PC1 N is NOT up: credit: Hajian et al (unpublished) HST archives, GO 75018390/8773



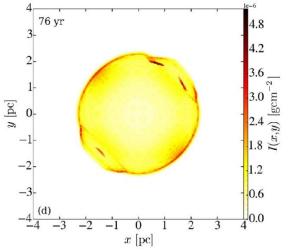
Ears in Type Ia SNRs

G1.9+0.3 SNR

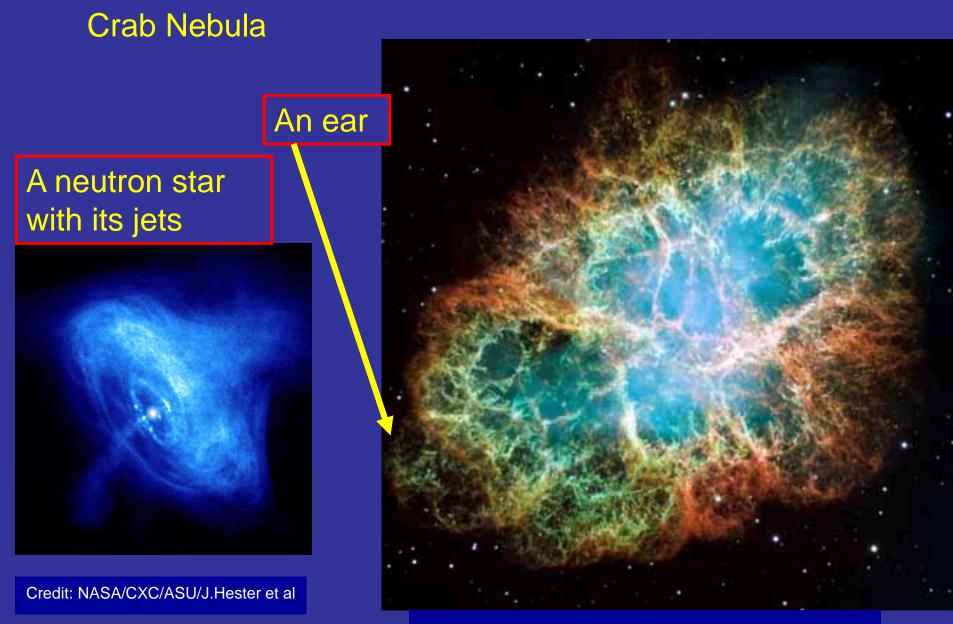

G299-2.9 SNR

Planetary nebulae

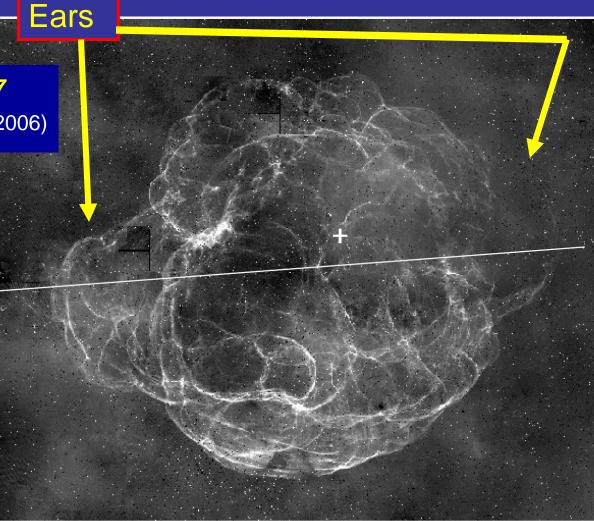
Remnants of supernovae la



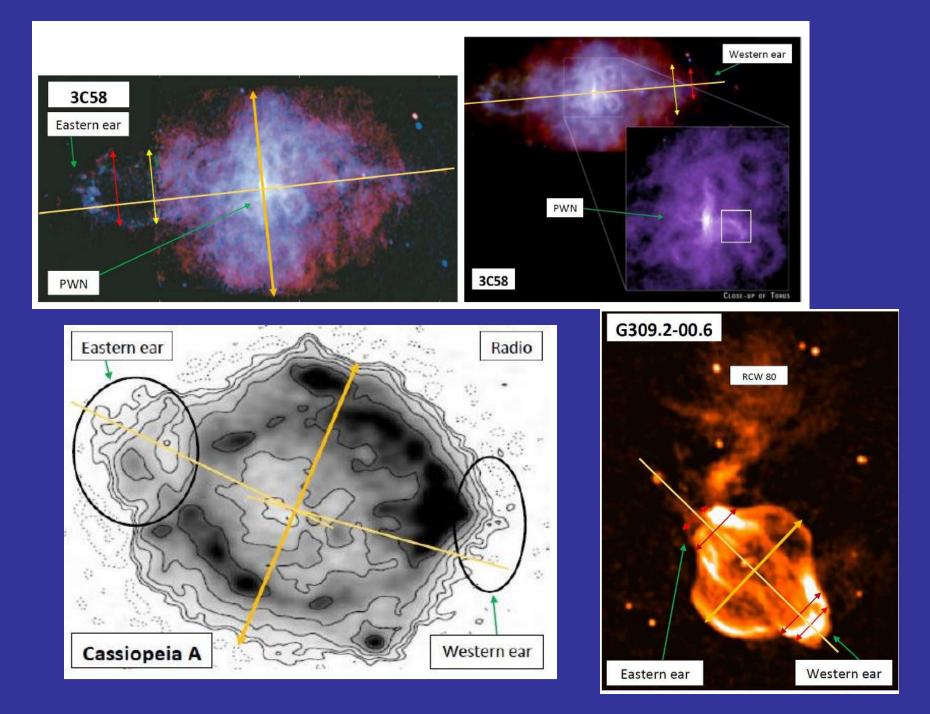
C 3242 B = log[[NII]:log[[OIII]:linV c GSI:042 e14(11-18 328, R:03 = ugN)[:lig(0][:inexV C2PC) N NDTs_credit Name of a lunpublished ws. 60 70 collocityC-


Jets might be common in pre - SN Ia, (Tsebrenko & Soker 2013, 2015a)

SNIP: Supernovae Inside Planetary nebulae


Ears in Core collapse supernova remnants

Grichener, A. & Soker, N. 2017, arXiv:1610:09647 Bear, E. & Soker, N. 2017, arXiv:1611:07327



Credit: <u>NASA</u>, <u>ESA</u>, J. Hester, A. Loll (<u>ASU</u>); Acknowledgement: Davide De Martin (<u>Skyfactory</u>)

Simeis 147 (V. V. Gvaramadze 2006)

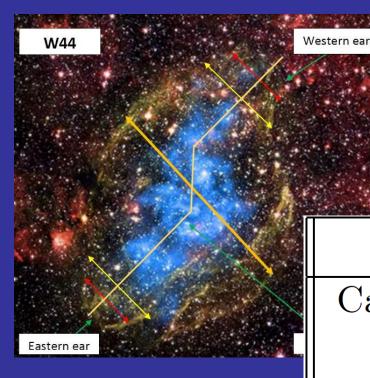


Fig. 1. The H_{α} image of the supernova remnant S 147 (Drew et al. 2005; reproduced with permission of the IPHAS collaboration). Position of the pulsar PSR J 0538+2817 is indicated by a cross. The line drawn in the east-west direction shows the bilateral symmetry axis (see text for details). North is up, east at left.

Relative energy to inflate the ears

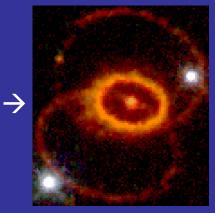
SNR	$\epsilon_{ m west}$	ϵ_{east}	ϵ_{ears}
Cassiopeia A	0.038	0.064	0.10
3C58	0.037	0.032	0.07
Puppis A	0.009	0.010	0.02
S147	0.039	0.072	0.11
Vela	0.005	0.004	0.01
G309.2-00.6	0.039	0.03	0.07
W44	0.034	0.029	0.06
Crab Nebula	-	0.034	0.03

To take home:

- About 40% core collapse supernova remnants have ears.
- The energy of the jets that inflated the ears is 5-15 % of the explosion kinetic energy.

Grichener, A. & Soker, N. 2017, arXiv:1610:09647

Bear, E. & Soker, N. 2017, arXiv:1611:07327


Formation of Ears: I think they are formed by jets

The ears can be formed before the explosion.

This requires a binary companion.

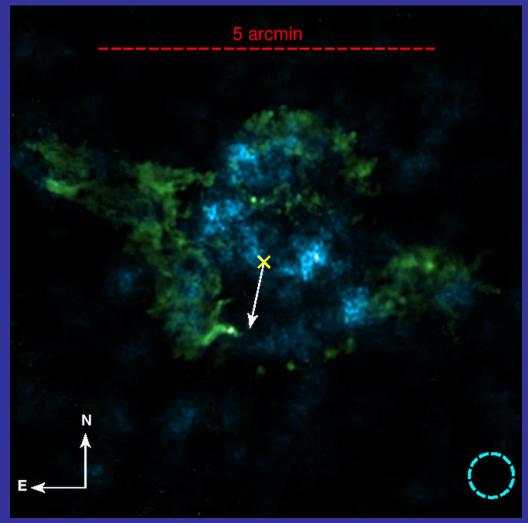
- + A bipolar circumstellar gas is seen in SN 1987A
- + S147 had a massive binary companion

(e.g., Dincel et al. 2015).

The ears can be formed during the explosion.

This <u>might</u> occur in the jet-feedback mechanism. In the last episode jets are launched after the core was exploded. These jets freely expand and form the ears.

- + Expected in the explosion mechanism.
- + Can have 5-10% of the explosion energy.
- + Same angular momentum spins-up the newly born neutron star.


The ears can be formed after the explosion.

+ We observe jets from the pulsar at the center (A note about magnetars).

? Does the pulsar have 5-10% of the explosion energy released in jets? (In 3C58 only ~1e49 erg in the pulsar.) **Cassiopeia A** In blue: 44Ti In Green: Si

A possible explanation in the frame of the jittering jets scenario.

- The 44Ti is formed at early times — first several jets. 44Ti spreads sporadically in inner regions.
- The last jets-launching episode did not collide with dense core gas, hence no 44Ti is formed. These jets expand to large distances.

(Grefenstette et al. 2014)

There are two scenarios within the jet feedback mechanism.

Soker, N. 2017, accepted for publication by astro-ph (arxiv:1702.03451)