

Turbulent magnetic reconnection and particle acceleration at nonrelativistic shocks of young supernova remnants

Artem Bohdan

Department of Gamma-ray Astrophysics Institute of Nuclear Physics PAS, Krakow, Poland

Collaborators:

Jacek Niemiec, Oleh Kobzar - Institute of Nuclear Physics PAS, Krakow Martin Pohl - University of Potsdam, Potsdam; DESY-Zeuthen, Germany

Réunion, 2017

Diffusive Shock Acceleration

Diffusive Shock Acceleration (DSA) process at young SNR shocks assumed to provide the main part of Galactic cosmic-ray flux. Possibly relevant for mildly-relativistic flows in AGN jets.

Attributes relevant for DSA: shock structure: ion driven but electron dynamics important EM field amplitudes particle pre-acceleration processes: electron injection constitutes the central unresolved issue

Perpendicular shock structure

- (1) Buneman instability

 (electrostatic waves),
 interaction of reflected ions and upstream electrons
- (2) ion-beam-Weibel instability, interaction of reflected and upstream ions

Magnetic reconnection

Ubiquitous plasma process which refers to the breaking and reconnecting of oppositely directed magnetic field lines in a plasma.

Magnetic energy is converted to kinetic energy, thermal energy and particle acceleration.

Nalewajko et al. 2015

Spontaneous turbulent reconnection in the foot region at perpendicular high Mach numbers shocks (Matsumoto et al. 2015)

Simulation setup

Matsumoto et al. 2015 parameters

> $φ = 0^{\circ}$ $m_i/m_e = 225$ $M_A = 41.7$ $L_y = 6.8 λ_{si}$

Our parameters

$$\phi = 0^{\circ}$$
, 45°
 $m_i/m_e = 50$, 100, 200, 400
 $M_A = 22.6 - 68.7$
 $L_y = (6.1 - 24) \lambda_{si}$

t=5.8Ω_i⁻¹

Magnetic reconnection in the foot region, in-plane magnetic field configuration

Legend: Color map - electron density, Black arrows magnetic field in x-y

plane

t=5.8Ω_i⁻¹

Magnetic reconnection in the foot region, in-plane magnetic field configuration

Legend: Color map - (y-1) of electrons, Black arrows magnetic field in x-y plane

Magnetic reconnection 45° magnetic field configuration

Legend: Color map - electron density, Black arrows - magnetic field in x-y plane

Magnetic vortex statistics

increase with mass ratio larger for higher plasma beta larger for 45° configuration

Particle acceleration

Trajectory of electron accelerated by E_z in x-point region

Trajectory of electron captured by magnetic vortex

Trajectory of electron accelerated via bouncing between colliding islands

Trajectory of electron accelerated via stochastic interaction with magnetic islands

Conclusions

- 1. Magnetic reconnection observed for 45° and in-plane (0°) magnetic field configurations. Particles can be accelerated in the reconnection structures.
- 2. Efficiency of magnetic reconnection formation linearly depends on ion-toelectron mass ratio.
- 3. At the same time particle downstream spectra do not change with ion-toelectron mass ratio, suggesting that the role of electron acceleration in the magnetic reconnection structures is subdominant compared to the stochastic acceleration in the turbulent shock precursor.
- 4. Independence on the ion-to-electron mass ratio makes realistic 3D shock modeling feasible.