## Synergy SKA - CTA

## Supernova remnants as cosmic accelerators

Adriano Ingallinera (INAF - Osservatorio Astrofisico di Catania)

## Radio supernova remnants

#### Radio facts:

- about 300 Galactic SNRs known
- about 50% of Galactic SNRs observed only in radio
- tracing the synchrotron emission from relativistic electrons

#### A unique tool to:

- locate the potential particle acceleration sites
- probe the local plasma conditions

## SNRs: a link between radio and high energies

## Radio morphology:

• infer the age of the remnant

## Radio spectral index map:

- reveal different plasma populations
- interaction with molecular clouds
  >> tracing particle acceleration sites
- reveal the presence of a PWN
  - >>> TeV emission

## SNRs: a link between radio and high energies

#### **Polarimetry:**

- intensity and direction of magnetic field
- magnetic field degree of disorder
  - >>> plasma turbulence as acceleration engine
- thermal/non-thermal emission mixing
- density and thickness of plasma

#### **OH masers:**

1720-MHz transition in shocked medium
 >> tracing particle acceleration sites

#### VLA+GBT maps at 1.4 GHz and 5 GHz



Ingallinera et al. 2014b

#### Spectral index map



Ingallinera et al. 2014b

VLA+GBT map at 5 GHz



Ingallinera et al. 2014b

#### OH maser detection at 1720 MHz



Ingallinera et al. 2015

## **Studying compact SNRs**

#### Many known Galactic SNRs have a radius $\lesssim 5'$



## The SKA and its precursors

#### The Square Kilometre Array:

- three different arrays: LOW, MID and SURVEY
- frequency coverage: 50 MHz to 14 GHz (30 GHz?)
- angular resolution: 20" to 0.05" (0.5" to 0.001" in phase 2)
- sensitivity (1 h): 5 to 1 µJy/beam (50 to 10 nJy/beam)



SKA-MID (Credits: Wikimedia Commons)

#### **Construction phases**

- SKA-1: 2018? 2022?
- SKA-2: 2023? 2030?



Dense Aperture Array (Credits: flickr.com)

#### The SKA precursors:

- addressing scientific and technological challenges of the SKA
- testing innovating elements (e.g. PAF) and huge data sets processing
- MWA, MeerKAT, ASKAP



## The Evolutionary Map of the Universe (Norris et al. 2011)

# EMU is a wide-field survey to be carried out with ASKAP **Overview**:

- observations starting in late 2017
- all-sky up to  $\delta = +30^{\circ}$
- frequency coverage: 1130 1430 MHz
- resolution:  $\sim 10''$
- sensitivity:  $\sim 10 \,\mu Jy/beam$
- about 75% of the Galactic plane will be covered

## The Evolutionary Map of the Universe (Norris et al. 2011)



Norris et al. 2015

## The Evolutionary Map of the Universe (Norris et al. 2011)



Norris et al. 2015

#### Galactic science with EMU:

- a complete census of the early stages of massive star formation in the Southern Galactic plane
- great discovery potential for missing SNRs
- detection of young SNRs
- detection of evolved stars (among which, SN progenitors)
- radio stars and pulsars

SKA precursors need themselves pathfinders!

#### ASKAP first "light" of the Galactic plane



(Credits: Josh Marvil)

#### ASKAP first "light" of the Galactic plane



<sup>(</sup>Credits: Josh Marvil)

## The SCORPIO project

#### Overview (Umana et al. 2015):

- $2^{\circ} \times 2^{\circ}$  survey toward the Galactic plane
- instruments: ATCA + Parkes + ASKAP-beta + ASKAP-12
- frequency range: 1.4 3.1 GHz
- sensitivity:  $\sim 0.1 \text{ mJy/beam} \text{resolution}$ :  $\sim 10''$
- more than 2000 point sources
- more than 40 Galactic bubbles (H II reg., evolved stars)
- one known SNR, two candidates (likely more)

## Other related papers:

- source extraction: Riggi et al. 2016
- spectral index study: Cavallaro et al. submitted
- extended sources: Ingallinera et al. in prep.

## Young SNRs in SCORPIO and EMU:

- we expect  $\sim 1$  SNR younger than  $\sim 50$  yr in 25 deg<sup>2</sup>
- for SNRs younger than  $\sim\!50$  yr we expect a flux density  $\sim\!1$  Jy (Bufano et al. 2014)

#### and how to recognize them:

- checking if the SN would have been detected in the optical (taking into account the visual extinction)
- distinguishing from extra-galactic sources:
  - >>> long-term flux density stability
  - >>> different appearance when observed at high-resolution

## **Implications on CTA science**



CTA facts:

- operational in 2024
- energy coverage: 0.02 to 300 TeV

#### Bernlöhr et al. 2013

#### How can SKA help CTA?

- SKA-MID can resolve filamentary structures and reduce depolarization
- SKA-LOW, tracing GeV emission, can distinguish between hadronic and leptonic origin of *γ*-ray emission from Galactic objects