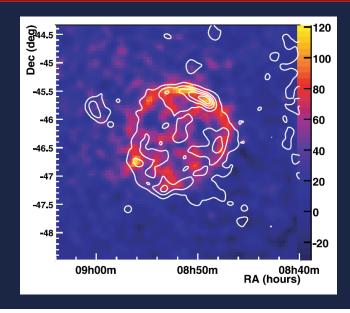
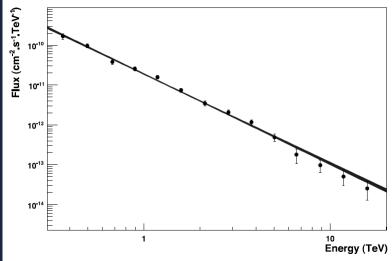

Morphology studies and resolved spectroscopy of the Vela Jr. Supernova remnant with H.E.S.S.

<u>Iurii Sushch</u>, Manuel Paz Arribas, Nukri Komin, Ullrich Schwanke for the H.E.S.S. Collaboration

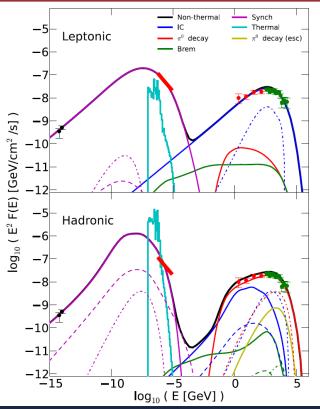
DESY, Zeuthen, Germany North-West University, Potchefstroom, South Africa


Aschenbach 1998, Nature, 396, 141


Vela Jr. SNR

- Young shell-type SNR
- Broadband non-thermal emission from radio to very-high-energy gamma-rays (E>100 GeV)
- Resolved shell at TeV energies

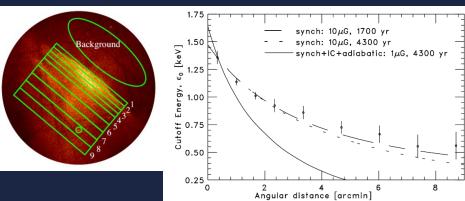
- Age: 1700 4300 yr
- Distance: 500 1000 pc. 750 pc (Katsuda et al. 2008) is used
- Probably core-collapse



Aharonian et al. 2007

TeV emission

- The first TeV detection was by CANGAROO (Muraishi et al. 2000)
- And then H.E.S.S. (Aharonian et al. 2004, 2007)
- Clear shell-like morphology with a thin shell
- Good correlation with the X-ray emission
- No evidence of cut-off in the energy spectrum



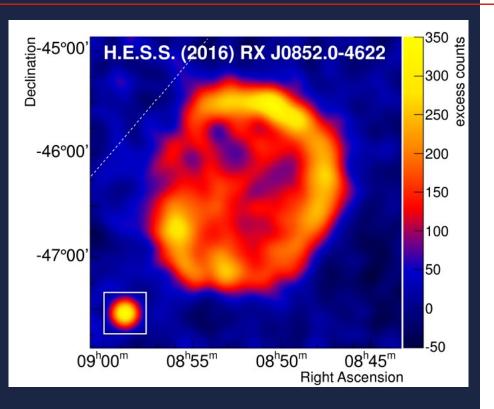
Lee et al. 2013

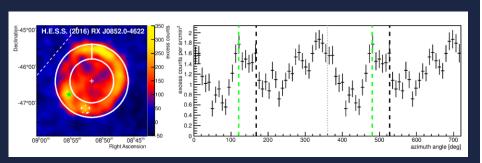
see Lee's talk

Kishishita et al. 2013

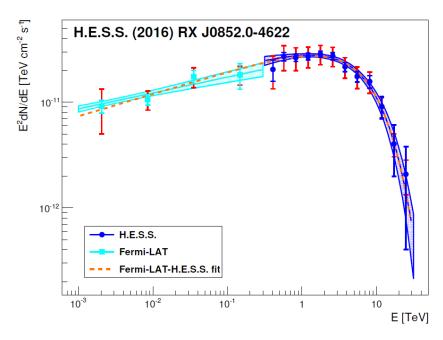
Origin: leptonic or hadronic?

- Leptonic models suggest low magnetic field (~ 5 μG), But sharp X-ray filaments suggest strong magnetic field amplification (100-500 μG) in case of fast synchrotron cooling (Bamba et al. 2005, Berezhko et al. 2009)
- Hadronic models require high density of the ambient medium which contradicts the non-detection of the X-ray thermal emission. May be interaction with the clumpy environment with dense small clouds.
- Steepening of the X-ray spectrum towards the observer explained by synchrotron cooling with ~ 10 μG magnetic field, but high (~ 100 TeV) electron cut-off energy




New data

- Data used in this analysis were taken between 2004 and 2009
- Data taken with the initial phase of H.E.S.S. (4 telescopes)
- The analysis of data up to the end of 2005 has already been published in Aharonian et al. 2005 & 2007
- Rough doubling of the data set
- Enables detailed morphological and spectral studies, including spatiallyresolved spectroscopy



Morphology

- Well resolved shell-like morphology
- North-western rim is brighter than the south-eastern part of the shell
- Enhanced emission in the southeast is coincident with a pulsar PSR J0855-4644 and probably coming from a TeV PWN
- Another local hot spot in the south

Spectrum

- Higher flux than found in previous studies. Lower flux found in previous studies was due to the lack of correction for the degradation of the telescopes' reflectivity
- Updated flux estimate makes Vela Jr the brightest steady source above 1 TeV
- Clear curvature in the spectrum best fit with the exponential cut-off
- Good connection with the GeV spectrum measured by Fermi-LAT

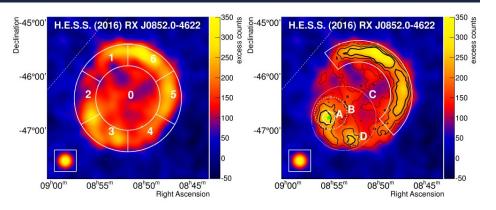
parameter		H.E.S.S.	H.E.S.S. and Fermi-LAT
Φ_0	$[10^{-12} \text{ cm}^{-2} \text{s}^{-1} \text{TeV}^{-1}]$	$32.2 \pm 1.5_{\text{stat}} \pm 7.1_{\text{syst}}$	$31.6 \pm 1.4_{\rm stat} \pm 7.6_{\rm syst}$
Γ		$1.81 \pm 0.08_{\rm stat} \pm 0.20_{\rm syst}$	$1.79 \pm 0.02_{\text{stat}} \pm 0.10_{\text{syst}}$
$E_{ m cut}$	[TeV]	$6.7 \pm 1.2_{\text{stat}} \pm 1.2_{\text{syst}}$	$6.6 \pm 0.7_{\text{stat}} \pm 1.3_{\text{syst}}$
E_0	[TeV]	1	1
$E_{\min} - E_{\max}$	[TeV]	0.3 - 30	0.001 - 30
F(> 1 TeV)	$[10^{-12} \text{ cm}^{-2} \text{s}^{-1}]$	$23.4 \pm 0.7_{\text{stat}} \pm 4.9_{\text{syst}}$	
F(0.3 - 30 TeV)	$[10^{-12} \text{ cm}^{-2} \text{s}^{-1}]$	$84.1 \pm 4.3_{\text{stat}} \pm 21.7_{\text{syst}}$	

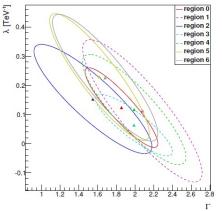
350 stuno seex H.E.S.S. (2016) RX J0852.0-4622 300 250 -46°00' -46°00 200 200 100 -47°00' -47°00' 08^h55^m 08^h45^m 08^h55^m 08^h50^m 08^h45^m 08^h50ⁿ Right Ascension Right Ascension

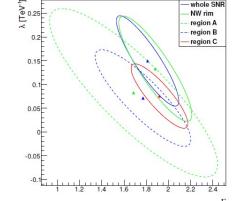
- region 0 - region 1 - region 2 - region 3 - region 4 - region 5 - region 6 - region 7 - region 8 - region 9 - region 9

Spatially resolved spectroscopy

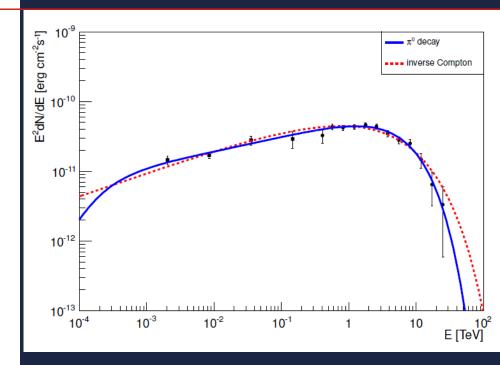
 Region 0 and regions in the NW rim show the preference for a cut-off in the spectrum



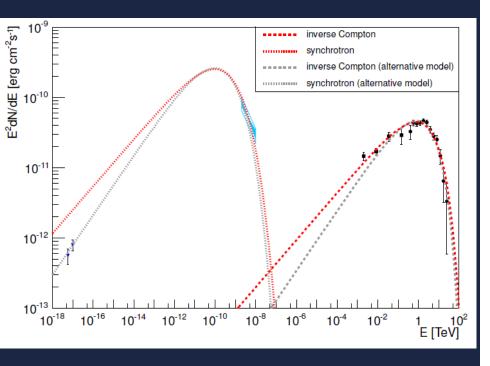

Spatially resolved spectroscopy

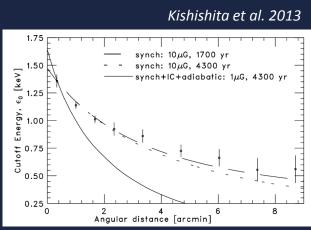

5-45°00' H.E.S.S. (2016) RX J0852.0-4622 350 g mo s g mo s

region	Φ_0	Γ	E_{cut}	<i>F</i> (> 1 TeV)	F(0.3 - 30 TeV)	sign
	$[10^{-12} \text{cm}^{-2} \text{s}^{-1} \text{TeV}^{-1}]$		[TeV]	$[10^{-12} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	$[10^{-12} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	
whole SNR	$32.2 \pm 1.5(\pm 7.1)$	$1.81 \pm 0.08 (\pm 0.20)$	$6.7 \pm 1.2(\pm 1.2)$	$23.4 \pm 0.7 (\pm 4.9)$	$84.1 \pm 4.3 (\pm 21.7)$	7.7σ
NW rim	$12.4 \pm 0.7(\pm 3.1)$	$1.88 \pm 0.10(\pm 0.20)$	$7.5 \pm 1.8(\pm 1.5)$	$8.9 \pm 0.4(\pm 2.2)$	$33.7 \pm 2.0(\pm 8.4)$	5.6σ
0	$8.9 \pm 0.6(\pm 2.2)$	$1.85 \pm 0.11(\pm 0.20)$	$8.1 \pm 2.6(\pm 1.6)$	$6.7 \pm 0.3(\pm 1.7)$	$24.1 \pm 1.6(\pm 6.0)$	4.5σ
1	$3.5 \pm 0.4 (\pm 0.9)$	$2.08 \pm 0.19 (\pm 0.20)$	$8.9 \pm 5.6(\pm 1.8)$	$2.34 \pm 0.20(\pm 0.59)$	$10.5 \pm 1.1(\pm 2.6)$	2.1σ
2	$2.4 \pm 0.3 (\pm 0.6)$	$1.55 \pm 0.18 (\pm 0.20)$	$6.5 \pm 2.3(\pm 1.3)$	$2.12 \pm 0.16 (\pm 0.53)$	$5.9 \pm 0.7(\pm 1.5)$	3.9σ
3	$4.0 \pm 0.3 (\pm 1.0)$	$1.99 \pm 0.12 (\pm 0.20)$	$15.8 \pm 7.7(\pm 3.2)$	$3.19 \pm 0.19 (\pm 0.80)$	$12.1 \pm 1.0(\pm 3.0)$	2.3σ
4	$3.8 \pm 0.4(\pm 1.0)$	$1.99 \pm 0.16 (\pm 0.20)$	$8.6 \pm 4.0(\pm 1.7)$	$2.64 \pm 0.20 (\pm 0.66)$	$10.9 \pm 1.1(\pm 2.7)$	2.7σ
5	$4.4 \pm 0.4(\pm 1.1)$	$1.62 \pm 0.15 (\pm 0.20)$	$4.4 \pm 1.2(\pm 0.9)$	$2.99 \pm 0.17 (\pm 0.75)$	$9.9 \pm 0.8 (\pm 2.5)$	5.5σ
6	$5.2 \pm 0.5 (\pm 1.3)$	$1.68 \pm 0.16 (\pm 0.20)$	$4.4 \pm 1.2 (\pm 0.9)$	$3.43 \pm 0.22 (\pm 0.86)$	$12.0 \pm 1.1(\pm 3.0)$	4.9σ
A	$0.64 \pm 0.10(\pm 0.16)$	$1.69 \pm 0.22 (\pm 0.20)$	$12.1 \pm 7.6(\pm 2.4)$	$0.62 \pm 0.07 (\pm 0.15)$	$1.8 \pm 0.3(\pm 0.4)$	1.8σ
В	$2.34 \pm 0.19 (\pm 0.59)$	$1.77 \pm 0.13 (\pm 0.20)$	$14.0 \pm 5.8 (\pm 2.8)$	$2.18 \pm 0.14 (\pm 0.55)$	$6.6 \pm 0.7 (\pm 1.7)$	2.7σ
C	$10.0 \pm 0.5 (\pm 2.5)$	$1.92 \pm 0.07 (\pm 0.20)$	$13.2 \pm 3.4(\pm 2.6)$	$8.2 \pm 0.3 (\pm 2.1)$	$29.5 \pm 1.6(\pm 7.4)$	4.5σ
D	$0.81 \pm 0.12 (\pm 0.20)$	$2.02 \pm 0.25 (\pm 0.20)$	$11.2 \pm 9.3 (\pm 2.2)$	$0.59 \pm 0.07 (\pm 0.15)$	$2.4 \pm 0.4 (\pm 0.6)$	1.4σ
B'	$1.88 \pm 0.18 (\pm 0.47)$	$1.78 \pm 0.15 (\pm 0.20)$	$13.9 \pm 6.9 (\pm 2.8)$	$1.73 \pm 0.13 (\pm 0.43)$	$5.4 \pm 0.6(\pm 1.3)$	2.3σ
C'	$6.7 \pm 0.4(\pm 1.7)$	$1.91 \pm 0.09 (\pm 0.20)$	$12.2 \pm 3.8 (\pm 2.4)$	$5.4 \pm 0.3 (\pm 1.4)$	$19.6 \pm 1.4(\pm 4.9)$	3.8σ

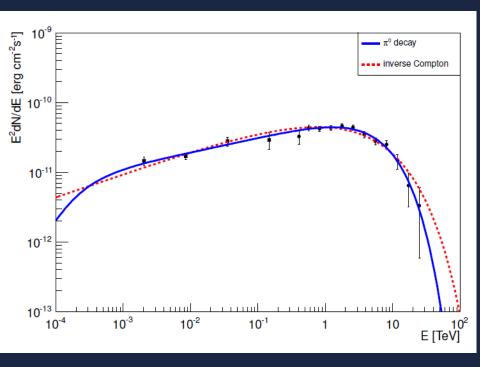

Spatially resolved spectroscopy

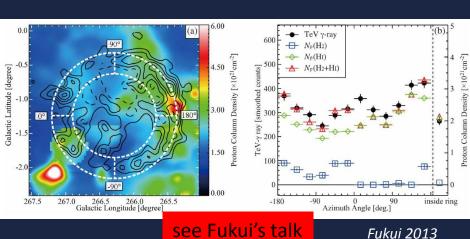
- Region 0 and regions in the NW rim show the preference for a cut-off in the spectrum
- No significant variation in the spectral properties
- Region B shows some evidence for harder spectrum (probably because of the PWN), but still not very significant (3.5σ pre-trials and 2.6σ post-trials)
- Region D doesn't show any deviation from the rest of remnant suggesting that this southern hot spot is associated with the SNR


Present-time parent particle population


- Lack of spectral variation suggests that parent particle distribution is essentially the same across the remnant
- Smooth connection with the GeV measurement and well-resolved cutoff allows us to directly extract the present-time parent particle population by fitting the GeV – TeV spectrum
- The spectrum of the parent particle population is assumed to follow the power law with an exponential cutoff in both leptonic and hadronic scenarios

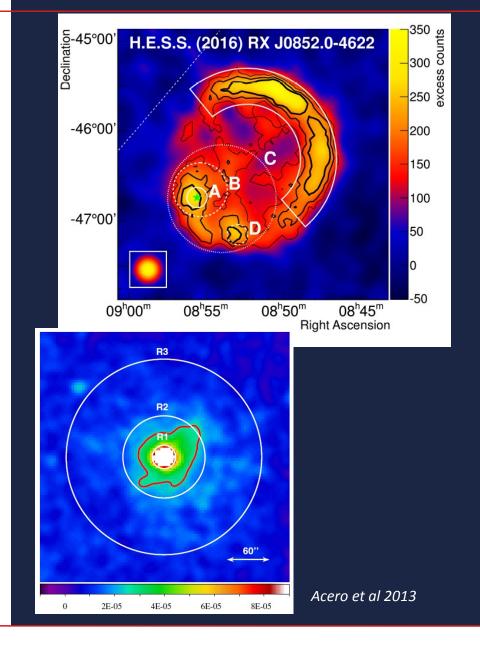
scenario	parameter		value
	$\frac{N_{0,p}}{4\pi d^2} [n]^{-1}$	$[10^4 \mathrm{TeV^{-1}cm^{-2}}]$	$7.8 \pm 0.3 (\pm 2.0)$
hadronic	$p_{\rm p}$		$1.83 \pm 0.02 (\pm 0.11)$
	$\hat{E_{\text{cut, p}}}$	[TeV]	$55 \pm 6(\pm 13)$
	$W_{\rm p} [n]^{-1}$	[10 ⁴⁹ erg]	$7.1 \pm 0.3 (\pm 1.9)$
	$\frac{N_{0,e}}{4\pi d^2}$	$[10^2 \mathrm{TeV^{-1}cm^{-2}}]$	$7.8 \pm 0.6 (\pm 3.1)$
leptonic	$p_{\rm e}$		$2.33 \pm 0.03 (\pm 0.33)$
	$E_{\rm cut,e}$	[TeV]	$27 \pm 1(\pm 12)$
	$W_{\rm e}$	[10 ⁴⁷ erg]	$4.1 \pm 0.3 (\pm 1.7)$





Leptonic scenario

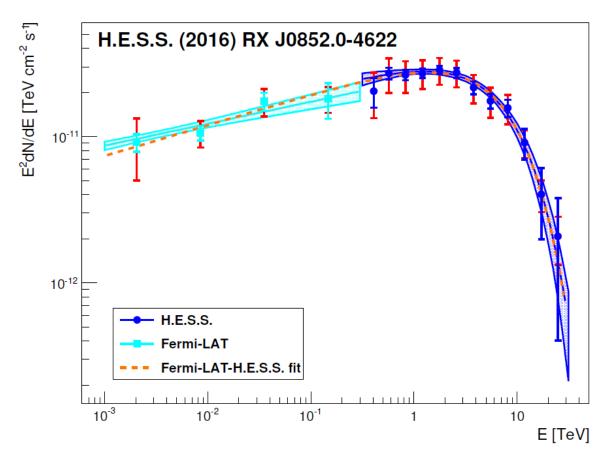
- For the derived parameters of the parent electron population, observed X-ray emission suggests a low magnetic field of 7 µG (average across the remnant)
- Radio data can also be accommodated within the uncertainties (the grey line is constructed by changing spectral parameters by 0.6σ)
- Synchrotron cooling effects are negligible
- The electron spectrum may be limited by the age of the SNR
- Still in conflict with filaments in the NW rim (if they are limited by synchrotron cooling)


Hadronic scenario

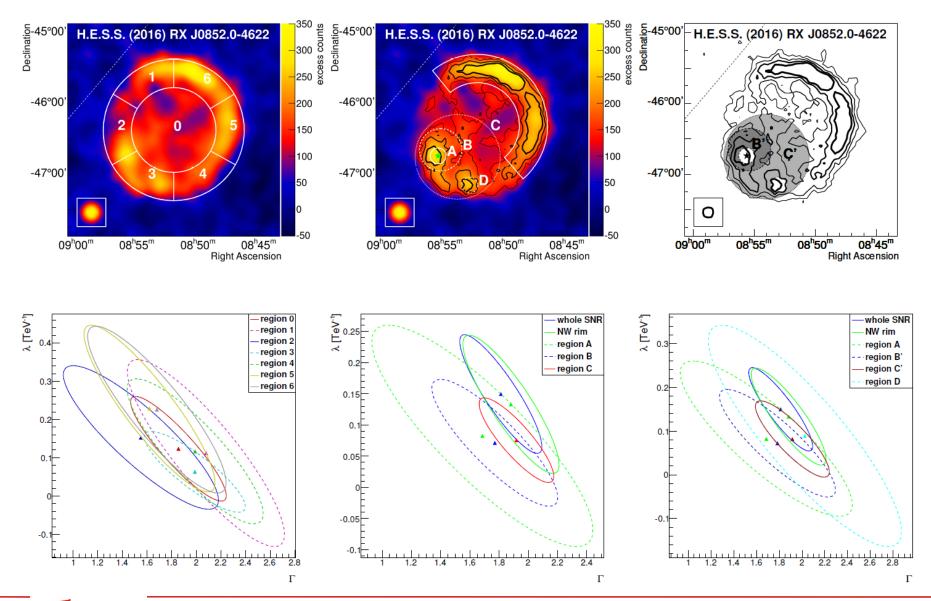
- Requires ~ 1 cm⁻³ density of the ambient medium
- Lack of X-ray thermal emission suggest the density ~ 2 magnitudes lower than that.
- Can be solved for the SNR expanding in a very inhomogeneous clumpy environment
- Indeed, the SNR seems to be surrounded by clouds which are coincident with regions of enhanced flux

Pulsar wind nebula

- PSR J0852.0-4622
 - Characteristic age of 140 kyr
 - Spin-down luminosity 1.1 · 10³⁶ erg
 - Closer than 900 pc
 - X-ray PWN detected
- We don't know the size of the potential TeV PWN, so several regions are assumed and emission from these regions is considered as an upper limit
- Region B: a hint of deviation of the spectrum w.r.t. the rest of SNR – constrains the size?
- Upper limit on the gamma-ray efficiency (above 1 TeV) is 10⁻⁴ – compatible with other PWNe
- Contamination of the SNR emission by PWN emission can be up to 8%


Summary

- A revised flux measurement makes Vela Jr. the brightest steady source above 1 TeV
- The energy spectrum exhibits a clear curvature with an exponential cut-off at $E_{cut} = 6.7 \pm 1.2_{stat} \pm 1.2_{svst}$ TeV
- The new TeV spectrum connects well to Fermi measurement at GeV energies enabling direct determination of the characteristics of the presenttime parent particle population in both leptonic and hadronic scenario
- Spatially-resolved spectroscopy study shows no clear spectral variation
- The enhancement of the flux detected towards PSR J0855-4644 suggests a possible contamination by the TeV PWN up to 8% of the total flux from the remnant


Back-up slides

model	$\Phi_0 [\text{cm}^{-2} \text{s}^{-1} \text{TeV}^{-1}]$	Γ	β	$E_{\rm cut}$ [TeV]	$\log L$	NFP	significance
PL	$(27.4 \pm 0.9) 10^{-12}$	2.30 ± 0.03	n/a	n/a	-51.717	2	n/a
CPL	$(28.8 \pm 1.1) 10^{-12}$	1.89 ± 0.07	0.23 ± 0.04	n/a	-24.567	3	7.3σ
ECPL	$(32.2 \pm 1.5) 10^{-12}$	1.81 ± 0.08	n/a	6.7 ± 1.2	-21.623	3	7.7σ

I. Sushch | IAU Symposium 331, Saint-Gilles-Les-Bains, La Reunion Island, France | 24 February 2017