

X-ray Synchrotron Polarization from Turbulent Plasmas in Supernova Remnants

Matthew G. Baring Rice University baring@rice.edu

IAU Symposium 331: SN 1987A, 30 years later, La Reunion, 23rd February 2017

Outline of Talk

- Bon anniversaire a SN1987a!
- Supernova remnant shells enhanced fields with strong synchrotron cooling in X-rays;
- Theoretical paradigm of turbulent field amplification due to cosmic ray currents;
- X-ray polarimetry is ideal probe of turbulence on the largest diffusion scales;
 - Prospects are soon –IXPE, XIPE, eXTP;
- Modeling synchrotron polarization in turbulent fields yields probes of turbulence character.

X-ray + TeV Supernova Remnants

- Emerging class of young SNRs emitting synchrotron X-rays
 - e.g., SN 1006, G347.3-0.5, Vela Jr., G330.2+1.0, RCW 86
 - direct evidence of electron acceleration up to ~50-100 TeV

(e.g. Koyama et al. 1995, 1997; Slane et al. 1999, 2001; Vink et al. 2006)

G347.3-0.5 & Vela Jr.: now seen at E > 100 GeV(Muraishi et al. 2000; Aharonian et al. 2004, 2005; Katagiri et al. 2005)

/Rutgers, Hughes et al.)

(TeV; Aharonian et al. 2006)

Chandra Spatial Brightness Profiles in SN1006

- Surface brightness profiles are much broader for thermal X-rays and radio synchrotron than for nonthermal X-rays;
- Narrowness of profiles along scans argues for shocks ⊥ to sky, i.e. no projectional smearing;
- Flux contrast ratio (< 1.5%) for upstream to downstream 1.2-2.0 keV suggests B_d/
 B_u>>4, i.e. greater than standard MHD compression in high M_S shocks (Cas A offers similar picture: Vink & Laming 2003);
- Non-thermal X-ray width suggests a connection between cosmic rays and Bfield amplification.

Thin black line: 0.5-0.8 keV; Black line: 1.2-2.0 keV; Grey line: 1.4 GHz radio.

Non-Linear Field Amplification by Cosmic Ray Streaming

Figure 4. Magnitude of the magnetic field in the (*x*, *y*) plane; slices at z = 0. The grey-scale minima (black) and maxima (white) at each time as bracketed pairs (minimum, maximum) are: (0.81, 1.22) at t = 0, (0.69, 1.35) at t = 2, (0.40, 2.30) at t = 4, (0.20, 12.01) at t = 6, (0.09, 39.88) at t = 10, (0.24, 79.72) at t = 20.

- Lucek & Bell (2000) proposed that high energy cosmic rays (CRs) in strong shocks could amplify B when streaming upstream (Fig.: Bell 2005);
- Work done on Alfven turbulence scales as the CR pressure gradient: $dU_A/dt=v_A dP_{CR}/dx$. Amplification should then scale as $(\delta B/B)^2 \sim M_A P_{CR}/\rho u^2$.

- First polarization measurement of Crab Nebula
 - **OSO-8 satellite experiment 1975** (Weisskopf et al. 1976)
 - Precision measurement at 2.6 keV

Position angle: $f = 156^0 + 2^0$ (from North, counterclockwise on sky)

Polarization degree: P = 19% + 1%

• Upper limit on pulsed emission from pulsar

IXPE: Prime SNR Targets

Weisskopf et al. (2013)

Table 5. MDP (99%) for selected supernova remnants^{57, 59, 60} with 10^5 s of observation (or a single observation of 10^6 s but in each of ten regions of the extended source).

Flux (5 keV, $ph/s/keV/cm^2$)	$\mathbf{MDP} (4-6 \text{ keV})$	Angular size (Approx. ⁵⁹)
$1.3 \ 10^{-2}$	2.75%	4'
$5.3 \ 10^{-4}$	13.5%	4'
$5.5 \ 10^{-4}$	13.3%	2.5'
$5.6 \ 10^{-4}$	13.3%	3'
$1.5 \ 10^{-4}$	25.7%	15'
$3.3 \ 10^{-3}$	5.5%	8'
$1.1 \ 10^{-3}$	9.39%	8'
$5.2 \ 10^{-4}$	13.7%	15'
	Flux (5 keV, ph/s/keV/cm2) $1.3 \ 10^{-2}$ $5.3 \ 10^{-4}$ $5.5 \ 10^{-4}$ $5.6 \ 10^{-4}$ $1.5 \ 10^{-4}$ $3.3 \ 10^{-3}$ $1.1 \ 10^{-3}$ $5.2 \ 10^{-4}$	Flux (5 keV, ph/s/keV/cm2)MDP (4-6 keV) $1.3 10^{-2}$ 2.75% $5.3 10^{-4}$ 13.5% $5.5 10^{-4}$ 13.3% $5.6 10^{-4}$ 13.3% $1.5 10^{-4}$ 25.7% $3.3 10^{-3}$ 5.5% $1.1 10^{-3}$ 9.39% $5.2 10^{-4}$ 13.7%

- IXPE's nominal 30" angular resolution can probe diffusive scales of the most energetic electrons emitting synchrotron X-rays in SNRs.
- Should be able to explore polarization position angles and degrees at different parts of rims and interiors.

Synchrotron Polarization from Turbulent SNR shells

- Polarization degrees (fractional colour scale) in 20 keV synchrotron emission from power-law turbulence spectra (δ=2). Angular resolution is <u>blurred increasingly</u> from left to right.
- From Bykov et al. (2009) MNRAS 399, 1119.

Radio Polarimetry of SN 1006

- Left panel: 1.4 GHz VLA/ATCA map of polarization degree. Resolution is 10".
- *Right panel*: sky-projected **B** field vectors derived from Stokes' parameters. Corrected for line-of-sight Faraday rotation. Vector length scales with flux.
- From Reynoso, Hughes & Moffett, Astron J. 145:104 (2013).

Path to Turbulence Probes

- Propagate electrons in prescribed magnetostatic turbulence Kolmogorov for now, slab geometries.
- Inject steep power law e⁻ distributions (p~3) to match spectra in X-ray band. Gyroradius smaller than cell & pixel size.
- Add up synchrotron emissivities and polarization parameters (Q, U, I, V) from small cells as part of bigger pixel grid.
- Spatial fluctuations in Stokes parameters emerge, coupling to strength $\sigma^2 = \langle (\delta B/B_0)^2 \rangle$ of turbulence.
- End goal: to identify signatures and correlations that will enable X-ray polarimetry to diagnose nature of turbulence.

Canonical Turbulence Power Spectrum

- Inertial range can span
 1-5 orders of magnitude.
- Doppler gyro-resonance condition ω=Ω/γ may not be satisfied by charges with large gyroradii;
- => increase of diffusive mean free path parameter $\eta = \lambda/r_g$ at large momenta.
- Expect $\lambda \alpha p^2$ at long wavelengths, below stirring scale (QLT).

Turbulent Field Lines

- *Sky plane projection* of magnetostatic Kolmogorov (k^{-5/3}) turbulence superposed on a uniform **B** in a model of a SNR shell.
- Moderately strong turbulence $\sigma \sim 0.1$ on left, and extremely strong turbulence $\sigma \sim 0.3$ on right. Stirring scale is $\sim R_{shell}/3$.

Synchrotron Intensity Pixelization

 Synchrotron intensity fluctuations (5% scale) in a sky map grid for Kolmogorov turbulence power σ=0.316; due to localized field enhancements. Red represents 1sigma positive enhancement over mean and green roughly 1 sigma negative decrement.

Polarization on the Grid: $\sigma^2=0.01$

Polarization on the Grid: $\sigma^2=0.1$

Conclusions

- Turbulence in the X-ray synchrotron emitting shells of SNRs is a prediction that is yet to be proved.
- Radio synchrotron polarization degree of ~20% suggests moderate turbulence but $\sigma^2 = \langle (\delta B/B_0)^2 \rangle$ no more than 1.
- Stokes U and position angle behavior is most powerful diagnostic on turbulence level and power spectrum index.
 - Hope is that spatial distribution of turbulence (radial and latitudinal) will be discernible in larger remnants.
 - Mean field obliquity at shock may be identifiable.
- Work to do: introduce self-consistent cooling of electrons it introduces spatial Q,U,V gradients in given turbulence.
- Work to do: define most useful assemblies of Stokes information for measuring turbulence parameters.
- What if IXPE measures Π > 30% ?....theorists will have to rethink the turbulence paradigm!