Massive Stars explosions

Stefano Valenti

credit: BJ Fulton

Core Collapse Supernovae

- SNe II
 - Ilpec
 - IIP IIL
- SNe Stripped Envelope
 IIb Ib Ic BLIc
- Interactive SNe
 - IIn
- Superluminous Supernovae
 II I
- New CC transients

Blue supergiant

Wolf Rayet

Luminous Blue Variable

How we can get more information on the progenitor stars of Core Collapse SNe ?

Core Collapse Supernovae

- SNe II
 - Ilpec
 - IIP IIL
- SNe Stripped Envelope
 IIb Ib Ic BLIc
- Interactive SNe
 - IIn
- Superluminous Supernovae
 II I
- New CC transients

llpec - 87A-like

Blue supergiant

- 3% of all CC SNe
- Progenitors ~ 20 M_{\odot}
- Compact progenitors

1964 papers on SN1987A Pastorello et al 2012, Taddia et al 2013, Taddia et al 2016, Takats et al 2016

- M_{Ni} ~0.04-0.23 M_{\odot}
- Sample ~ 10 objects
- Prefer low metallicity

llpec - 87A-like

SN II (IIP)

- 62% of all CC SNe (IIP-IIL)
- Progenitors ~ 8 -16 M_{\odot}
- RSG (few 100 R_{\odot})

M_{Ni} ~0.002 - 0.2 M_☉
Sample ~ 100 -150 objects

Smart et al 2009, Anderson et al 2014, Spiro et al 2014, Faran et al 2014a, Sanders et al 2015, Valenti et al 2016

Popov 1993 - Young 2004 - Utrobin 2007, Kasen & Woosley 2009 Bersten et al 2011

SN II (IIP)

1987A BSG 2012aw RSG

Blue supergiant

Red supergiant

t ~ 122 (days) E^{-1/4} M ^{1/2} R^{1/6}

Popov 1993 - Young 2004 - Utrobin 2007 Kasen & Woosley 2009 - Bersten et al 2011

SN II (IIL)

Radius ? Interaction ? smaller hydrogen mass ?

smaller H ejecta radius ~ 6000 R⊙ (Blinnikov and Bartunov 1993)

Faran et al 2014a Faran et al 2014b Anderson et al 2014 Sanders et al 2015

two distinct classes

one class

SNe IIL have a short plateau

10

SNe IIL are brighter

Anderson et al 2014 Faran et al 2014a Faran et al 2014b Sanders et al 2015 Valenti et al 2016

Similar Nickel

Faran et al 2014a Faran et al 2014b Sanders et al 2015 Valenti et al 2016

CC Compact Radius -> Cools faster

IIP-IIL

87A-like

Compact Radius -> Cooling faster

Chevalier & Fransson (2008) Rabinak & Waxman (2011)

IIL - IIP radius

Valenti et al 2016

Radius is not the key parameter to distinguish SNe IIP and IIL

Are IIL progenitors more massive than SNe IIP ?

Are IIL progenitors more massive than SNe IIP ?

Oxygen is a good tracer for progenitor masses

Spectral Synthesis models

Evolve the stellar hydrodynamics code Kepler (Woosley & Heger 2007)

Follow the y-Ray deposition (heating, ionizations and excitation)

(for nebular spectra see Fransson and Chevalier 1989)

SNe IIL come from progenitor 8-16 M_{\odot}

IIP-like are red IIL-like are blue

Valenti et al 2016

There is not a clear trend with SNe IIL being more massive than IIP

SNe IIL are brighter than SNe IIP

Are SNe IIL powered by extra energy source? (CSM interaction)

Valenti et al 2015a

Modeling CCSNe

KEPLER, MESA - SNEC

Dense CSM can be important for the majority of SNe II

Morozova et al (arXiv161008054M)

Core Collapse Supernovae

- SNe II
 - Ilpec
 - IIP IIL
- SNe Stripped Envelope
 - IIb Ib Ic BLIc
- Interactive SNe
 - IIn
- Superluminous Supernovae
 II I
- New CC transients

Wolf Rayet

IIb/Ib/Ic/IcBL

- 30% of all CC SNe
- Progenitors ~ > 20-25? M_☉
- No H, He (IIb little H)

Modjaz et al. 2014, Bianco et al. 2014, Prentice et al 2016, Yu-Qian et al 2016, Lyman et al 2016

M_{Ni} .11 .14 .15 .34 M_☉
Sample ~ 50-100 objects

llb

lb

Modjaz et al 2014, Yu-Qian et al 2016, Modjaz et al 2016

60

SNe Ic

SNe Ib

٥

Δ

40

40

60

SNe IIb

SNe Ib

Bianco et al. 2014, Prentice et al 2016

Lyman et al 2016, Cano 2013

How 20-40 M_☉ progenitors lose large amount of ejecta before explode ?

Binary Systems

Germany et al 1980 Sana et al 2008, 2009, 2012

Smartt et al 2015

A fraction of SNe lb/c are coming from stars > 8 M $_{\odot}$ in binary system

Podsiadlowski et al. 1993 Fryer et al 2007

Core Collapse Supernovae

- SNe II
 - Ilpec
 - IIP IIL
- SNe Stripped Envelope
 IIb Ib Ic BLIc
- Interactive SNe
 - IIn
- Superluminous Supernovae
 II I
- New CC transients

Interactive SNe IIn

Chevalier & Fransson 1994

- 5% of all CC SNe
- Progenitors ~ LBV RSG?
- Dense CSM

- Sample ~ 10 20 objects
- heterogeneous

Schlegel 1990, Chugai & Danziger 1994, Fransson et al. 2002, Gal-Yam et al 2006

Interactive SNe IIn

98S-like (lln-L) 94W-like (lln-P) 88Z-like (lln)

Taddia et al 2013, Kankare et al 2013, Mauerhan et al. 2014

09ip-like

98S-like (lln-L) 94W-like (lln-P) 88Z-like (lln) 09ip-like

Taddia et al 2013, Kankare et al 2013, Mauerhan et al. 2014,

Pastorello et al 2013, Smith et al 2012, Fraser et al 2013, Foley et al 2011, Graham et al 2014, Mauerhan et al. 2013, Margutti et al 2014, Ofek et al 2013, Tartaglia et al 2016, Thöne et al 2016,

Core Collapse Supernovae

- SNe II
 - Ilpec
 - IIP IIL
- SNe Stripped Envelope
 IIb Ib Ic BLIc
- Interactive SNe
 - IIn
- Superluminous Supernovae
 II I
- New CC transients

SLSN II SLSN I SLSN I-R

Smith et al 2007, Barbary et al 2008, Agnoletto et al 2009, Gal-Yam et al 2009, Young et al 2010, Pastorello et al 2010, Quimby et al 2011, Gal-Yam 2012, Benetti et al 2014, Inserra et al 2013,

Pastorello et al 2010

SLSN I
Nicholl et al 2013

SLSN I
SLSN Ic

33

Smith et al 2007, Benetti et al 2014; Prieto et al. 2007; Aldering et al. 2006; Gezari et al. 2009; Miller et al. 2009, Agnoletto et al. 2010

- Blue spectra
- Ha visible
- Not strong sign of interaction
- If it is interaction, where are the intermediate cases

 SLSNI

 SLSNI-R

Magnetar model

Pair Instability

CSM-ej. interaction

Woosley 2010, Kasen & Bildstein 2010, Inserra et al. 2013, Nicholl et al. 2013

SLSN II

Heger & Woosley 2002, Gal-Yam et al. 2009 Woosley 2007, Chevalier & Irwin 2011, Gizburg & Balberg 2012

Core Collapse Supernovae

- SNe II
 - Ilpec
 - IIP IIL
- SNe Stripped Envelope
 IIb Ib Ic BLIc
- Interactive SNe
 - IIn
- Superluminous Supernovae
 II I
- New CC transients

Fast evolving SNe

SN 2002bjPoznanski et al. 2010SN 2010XKasliwal et al 2010SN 2005ekDrout et al 2013

Exploded in late type galaxies

Fast evolving SNe

Drout et al 2013

2010X, 2005ek spectra similar to SNe Ic

Kleiser et al 2013

38

Fast evolving SNe

Massive stars low ejected mass 0.1-0.3 Mej

Drout et al 2013

Massive stars with no nickel ejected LC powered by oxygen recombination (large radius)

Kleiser et al 2013 39

Are there more ?

credits: Kulkarni

ASAS-SN15lh: SLSN or TDE?

A Highly Super-Luminous Supernova

Dong et al Science, 2015 Leloudas et Nature astronomy, 2016

Conclusions

- The sample of SNe Core Collapse with extended wavelength data is growing fast (early phase, late phase, homogeneous set of data)
- There is not a clear trend with SNe IIL being more massive than IIP
- Interaction seems to be important for a large fraction of SNe II
- A large fraction of SNe Ib/c are coming from stars > 8 M_{\odot} in binary system
- The zoo of Core Collapse SNe is still not complete

Thanks

extra slides

Core Collapse Supernovae

Shivvers et al 2016

Nicholl et al 2013

Geometry of the explosion

