SN 1986J: a Neutron Star or a Black Hole in the Center?

Michael Bietenholz, Hartebeesthoek Radio Observatory, South Africa *also* York University, Canada Norbert Bartel, York University, Canada

Radio Observations of SNe

- Optical: ~1000 SNe are detected each year, both Type I and Type II
- Radio: Only core-collapse (Type II, Type I b/c) detected in radio to date. Only a few SNe detected each year in radio; total radio detections to date ~100
- Except for Magellanic clouds (i.e. SN 1987A), the *only* way to resolve the ejecta in the first ~century is VLBI
- Only a handful have been resolved with VLBI (radio bright and < 30 Mpc)

Standard Model of SN Radio Emission

Chevalier, 1982

Introduction to SN 1986J

- SN 1986J discovered in the radio in 1986
- In NGC 891, *D* = 10 Mpc (NED)
- Supernova happened in 1983.2 ± 1.1
- Massive progenitor (>20 Msol)
- Optical spectrum was unusual: prominent H α lines but narrow linewidths \rightarrow classified as a Type IIn SN (Rupen et al. 1987)
- Very radio luminous. One of the first SNe to be observed with Very Long Baseline Interferometry (Bartel et al 1987, 1991)
- Although it's fading, it's still radio-bright 30 years on

Evolution of SN1986J

Expansion of SN 1986J

Radio Spectrum of SN 1986J

Central Component in SN1986J

Multi-frequency VLBI Image:

Contours, red: 5 GHz

Blue \rightarrow white: 15 GHz

Youngest Neutron Star or Black Hole?

Motion of the Two Hotspots

Time axis is non-linear, so $x \propto t^{0.69}$, similar to outer radius, $\theta_{\rm out} \propto t^{0.69}$

VLBI Image at 5 GHz in 2014

Multi-frequency Radio Lightcurve

- The radio lightcurves of SN 1986J at several different frequencies, as measured with the Very Large Array
- The slope of the decay is different at different frequencies

Evolution of the Spectral Energy Distribution (SED)

VLA measurements:

- Inversion in SED first appears at *t* = 14.9 yr
- both inflection point and high-frequency turnover evolve downward with time

Fit to the Evolving SED

- Two-part model for evolving SEDs, with 1) a shell component and 2) a central component, which is partly absorbed (free-free), both with powerlaw spectra
- Both intrinsic flux densities of the components and the absorption (Emission Measure) evolve as power-laws, $\propto t^{b}$
- Bayesian fit wrt. the measured flux densities

$$S_{
m shell} = S_{
m 0, shell} (rac{t}{20 \, {
m yr}})^{b_{
m shell}} \, (rac{
u}{1 \, {
m GHz}})^{lpha_{
m shell}}$$

$$S_{
m comp} = S_{0,
m comp} (rac{t}{20~{
m yr}})^{b_{
m comp}} \, (rac{
u}{1~{
m GHz}})^{lpha_{
m comp}}$$

Results:

- $S_{\text{shell}} = 7.1 \pm 0.2 \text{ mJy}$
- $b_{\rm shell} = -3.92 \pm 0.07$
- $a_{\text{shell}} = -0.63 \pm 0.03$

- $S_{comp} = 61 \pm 17 \text{ mJy}$
- $b_{\rm comp} = -2.1 \pm 0.2$
- $\alpha_{\rm comp} = -0.76 \pm 0.07$
- $EM_0 = (1.6 \pm 0.2) \times 10^9 \text{ cm}^{-6} \text{ pc}$

•
$$b_{\rm EM} = -2.7 \pm 0.3$$

Results of Fit to the SED

- Both central component and shell are declining in flux density with time, but shell more rapidly (shell $\propto t^{-3.92}$, central comp $\propto t^{-2.1}$)
- The spectral indices of the central component and the shell are almost the same within the uncertainties
- At t=20 yr, the intrinsic (unabsorbed) central component was 9 ± 3 times stronger than shell and its dominance is increasing.
- EM (absorption) also declining with time $\propto t^{-2.7}$, consistent with constant number of electrons and a system expanding with $r \propto t^{-0.54}$

Results:

- $S_{\text{shell}} = 7.1 \pm 0.2 \text{ mJy}$
- $b_{\text{shell}} = -3.92 \pm 0.07$
- $a_{\text{shell}} = -0.63 \pm 0.03$

- $S_{comp} = 61 \pm 17 \text{ mJy}$
- $b_{\rm comp} = -2.1 \pm 0.2$
- $a_{\rm comp} = -0.76 \pm 0.07$
- $EM_0 = (1.6 \pm 0.2) \times 10^9 \text{ cm}^{-6} \text{ pc}^{-6}$
- $b_{\rm EM} = -2.7 \pm 0.3$

Evolution of the Spectral Energy Distribution

- VLA measurements:
- Inversion in SED
 first appears at
 t = 14.9 yr
- both inflection point and highfrequency turnover evolve downward with time

Evolution of the Spectral Energy Distribution

- thin dotted lines show the fitted shell + partlyabsorbed central component model
- inflection point and highfrequency turnover move down with time

What Do We Know about the Central Component?

- Its intrinsically brighter than the shell, with much higher surface brightness. Currently its 5-GHz spectral luminosity is ~30× that of the Crab Nebula
- Its radio emission is partly absorbed, likely by free-free absorption in the intervening ejecta. Its unabsorbed spectral luminosity is ~9× that of the shell and around 120× that of the Crab nebula
- Its unabsorbed flux density is decreasing with time, $S \propto t^{-2.1}$ (shell $\propto t^{-3.92}$)
- Its spectral index is close to that of the shell
- The amount of absorption is decreasing with time
- It is stationary to within the uncertainties of 570 km/s (12 µarcsec/yr)
- It is marginally resolved, $r_{\text{comp}} = (6.7 + 0.7) \times 10^{17} \text{ cm}$
- if it originated in the SN explosion, it is expanding with ~680 km/s, ~9% the expansion speed of the shell.

What is the Central Component?

- 1) Interaction of the shock with a dense condensation in the CSM, by chance central in projection. Absorption is due to the CSM clump itself, not the ejecta. Can be ruled out: Its too stationary, bright, and long lasting
- 2) A newly-born pulsar wind nebula. Central location and stationarity are expected, but the relatively steep spectral index and the decline with time are not.
- 3) An accreting black-hole system. Central location and stationarity are expected, but it has a far higher radio luminosity, and L_{radio}/L_X than any known stellar-mass black hole systems.
- 4) The interaction of the SN shock with a very anisotropic ISM, with a very dense equatorial region. Shock would be hour-glass shaped. The central component is the part of the shock propagating in equatorial region (see e.g. Chevalier 2012)

What is the Central Component?

- 1) Interaction of the shock with a dense condensation in the CSM, by chance central in projection. Absorption is due to the CSM clump itself, not the ejecta. Can be ruled out: Its too stationary, bright, and long lasting
- 2) A newly-born pulsar wind nebula. Central location and stationarity are expected, but the relatively steep spectral index and the decline with time are not.
- 3) An accreting black-hole system. Central location and stationarity are expected, but it has a far higher radio luminosity, and L_{radio}/L_X than any known stellar-mass black hole systems.
- 4) The interaction of the SN shock with a very anisotropic ISM, with a very dense equatorial region. Shock would be hour-glass shaped. The central component is the part of the shock propagating in equatorial region (see e.g. Chevalier 2012)

Black Hole with Jets???

 Could SN 1986J host an accreting black hole with jets, where the jets produce the NE hot-spot and the faint SW extension?

