Imaging of the puy de Dôme volcano from gravimetric and muographic data

Anne Barnoud

LPC - Clermont-Ferrand - 09/06/17

Outline

- Introduction on geophysical imaging
- Puy de Dôme
- Gravimetry
 - Principle of the method
 - Inversion approach
 - Inversion of the puy de Dôme data
- Muography
 - Principle of the method
 - Muography of the puy de Dôme
- Joint inversion

Medical imaging to see inside the human body

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

Geophysical imaging to see inside the Earth

Non destructive sounding of the Earth's subsurface, from local to global scale

Some geophysical methods

Gravimetry

Heliborne magnetic and electromagnetic

Seismic methods

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

Electromagnetism

Electrical resistivity

Inversion in geophysics

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

Data, eg.:

- seismic wave travel times
- gravitational field of the Earth

Model, eg.:

- seismic velocity and density
- density

Inversion in geophysics

Inversion in geophysics

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

7

Puy de Dôme volcano

- located in the French Massif Central ancient volcanic zone
- lies on a hercynian basement
- about 11000 year old
- dome 400 m high and 1.8 km wide
- formed by two distinct extrusions
- hydrothermal alteration
- **isolated** from neighbor edifices

Spherical Earth

Spherical Earth

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

Ellipsoidal Earth

$dg = 0,05 \text{ m/s}^2$

Geoid (equipotential surface following the averaged sea level)

Geoid height (EGM2008, nmax=500)

Bezdek and Sebera 2013

Geoid (equipotential surface following the averaged sea level)

Geoid height (EGM2008, nmax=500)

Bezdek and Sebera 2013

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

Gravity field variations due to density variations

Gravity disturbance (EGM2008, nmax=500)

$dg = 0,004 \text{ m/s}^2 = 400 \text{ mGal}$

Local gravimetric variations

LCPC 2004

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

Portal 2015

Local gravimetric variations

LCPC 2004

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

 $dg \sim 0,00001 \text{ m/s}^2 = 1 \text{ mGal}$

Non-unicity of the gravimetric method

Linear gravimetric inverse problem

- Modelling
 - Nodes of density
 - Topography taken into account
- Linear problem

Ill-posed

Function to minimize: Bayesian regularization (Tarantola & Valette 1982)

$$egin{aligned} \phi(\widetilde{oldsymbol{
ho}}) &= (oldsymbol{d} - \mathbf{G}\widetilde{oldsymbol{
ho}})^t \mathbf{C}_{\mathrm{D}}^{-1} (oldsymbol{d} - \mathbf{G}\widetilde{oldsymbol{
ho}}) - & \ & \downarrow & \ & \mathbf{C}_{\mathrm{D},ii} &= oldsymbol{\sigma}_{d,i} & \ & & \mathbf{C}_{\mathrm{D},ii} &= oldsymbol{\sigma}_{d,i} & \ & & \left[rac{1/\sigma_d^2}{\sigma_d} & 0 & \ & \ddots & \ & 0 & 1/\sigma_d^2 \end{array}
ight] \end{aligned}$$

data error

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

$G\rho = d$

- a priori density standard deviation
- spatial correlation length

Resolving power of the gravimetric inversion: Cas of the puy de Dôme

Result of the inversion of the puy de Dôme gravimetric data

Gravimetric data RMS = 0.70 mGal

What is muography?

Idea: radiography with muons -> 2D images of averaged density

- come from the interaction of **cosmic rays** with the atmosphere (free!)
- similar to electron, 200 times heavier
- large energy spectrum 100 MeV -> PeV
- interact with matter in a stochastic way (depending on their energies and medium) density)
- at high energy cross several kms of matter before decaying

At sea level: ~1 muon/cm²/min i.e. ~1 muon/s crosses one's hand

21

Principle of transmission muography

- A uniform density is assumed along the line of sight to compute the transmitted flux.
- For each line of sight, the observed rate is matched to the best density hypothesis.

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

azimuth (deg)

What can be imaged with muography?

Exposure: number of days to reach a precision on density of 5% in a 1°x1° solid angle and with a detector of 1 m²

What can be imaged with muography?

Exposure: number of days to reach a precision on density of 5% in a 1°x1° solid angle and with a detector of 1 m²

What can be imaged with muography?

Exposure: number of days to reach a precision on density of 5% in a 1°x1° solid angle and with a detector of 1 m²

Muography of puy de Dôme volcano - Acquisition and track reconstruction

• Col de Ceyssat campaign 2015-2016: equivalent to **100 days of data**

4 layers of gas resistive plate chambers (GRPCs)

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

Grotte Taillerie

45°46'10.4"N 2°59'19.8"E

871.1 m

Jan - July 2011

March - April 2016

$S_{eff} = S_{det} \varepsilon_{det} A_{geom} \varepsilon_{illum}$

Track reconstruction with measurement uncertainties

Muography of puy de Dôme volcano - Density reconstruction

Crosscheck for a uniform density model of 1800 kg/m³

- Few degrees from the border: \bullet
 - bias negligible (~10-20 kg/m³)
 - statistical uncertainties below ~100 kg/m³
- Small rock depths: muon flux weakly sensitive to density

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

• Close to the rock border: mixing of transmitted and free sky flux increases bias and uncertainties

Motivation for the joint inversion of gravimetric and muographic data

- Both methods are sensitive to **density**. ullet
- Muography provides 2D images of density averaged along given directions. lacksquareGravimetry allows for 3D reconstruction of density variations through inversion. ullet

Gravimetry

- Advantages: good resolution of shallow structures and lateral variations
- Limitations: rapid decrease of resolution with depth, non unicity of the method

Muography

- Advantages: localized measurement of density along lines of sight, high resolution in space and density
- Limitations: less sensitive close to the surface: smaller attenuation due to \bullet smaller rock depths, muon scattering...
- Resolution depending on aperture and time of exposure

Examples: Nishiyama *et al.* 2014, Jourde *et al.* 2015

Formulation of the joint inversion problem

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

gravimetric data

densities averaged along lines of sight

$$egin{aligned} & ||m{d}-\mathbf{A}m{
ho}||_{\mathrm{D}}^2+||m{
ho}-m{
ho}_{prior}||_{\mathrm{P}}^2 \ & (m{d}-\mathbf{A}m{
ho})^t\mathbf{C}_{\mathrm{D}}^{-1}(m{d}-\mathbf{A}m{
ho})+(m{
ho}-m{
ho}_{prior})^t\mathbf{C}_{\mathrm{P}}^{-1}(m{
ho}-m{
ho}_{prior}) \end{aligned}$$

Joint inversion: Data from the puy de Dôme volcano

• Data for the inversion

Data from Portal et al. 2016

Resolution

Posterior density standard deviation (kg/m³)

-
2.0 +6.518e3

Result of the inversion of gravimetric data only

Gravimetric data RMS = 0.70 mGal

Result of the joint inversion of gravimetric and muographic data

Gravimetric data RMS = 0.70 mGal

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

Muographic data RMS = 40 kg/m

Conclusion

- promising preliminary results for the muography and the combined inversion
- joint inversion improves resolution compared to gravimetric only inversion, equally fitting the data
- ongoing improvements

 - inversion: synthetic tests, systematic estimation of regularization parameters
 - muon tomography with several view points \bullet
- density imaging of active volcanoes (Vesuvius and Stromboli)

Anne Barnoud, LPC - Imaging of the puy de Dôme volcano from gravimetric and muographic data - 09/06/17

• muography: muon scattering taken into account, refined description of instrumental response, background...

Thank you for your attention! Questions?