Hadron physics at LEPS/ LEPS II and Belle

M. Niiyama (Kyoto U.)

Contents

LEPS

- coherent φ-meson photoproduction from ⁴He.
- LEPS2
 - beam asymmetry (Σ) for η-meson photoproduction.
- Belle
 - production rates of hyperons and charmed baryons from e^+e^- annihilation near $\Upsilon(4S)$.

Coherent φ-meson photoproduction from ⁴He

LEPS facility

- Backward Compton scattering of laser photons with 8 GeV electrons in SPring-8
 - 351nm Ar laser (3.5eV) 8W ~ 2.4 GeV photon
 - 266nm Solid+BBO (4.6eV) 1W ~3.0 GeV photon
- Laser Power ~6 W (351nm) Photon Flux ~1 Mcps (2.4 GeV)
- E_{γ} measured by tagging a recoil electron $E_{\gamma} > 1.5$ GeV, $\Delta E_{\gamma} \sim 10$ MeV
- Laser linear polarization 95-100% \Rightarrow Highly polarized beam

Experimental setup

Motivation (I): why φ ?

Pomeron exchange:

- Dominant process at high energies
- Not well understood at low energies
- Natural-parity
- Multi-gluon dynamics

Pseudo-scaler meson exchange:

- Dominant process at low energies
- Well established process
- Unnatural-parity
- π , η meson exchange

Motivation (I): why φ ?

Pomeron exchange:

- Dominant process at high energies
- Not well understood at low energies
- Natural-parity
- Multi-gluon dynamics

Pseudo-scaler meson exchange:

- Dominant process at low energies
- Well established process
- Unnatural-parity
- π , η meson exchange

Motivation (II): why ⁴He?

- Pseudo scalar meson exchange is forbidden.
- Pomeron (or gluonic) dynamics appears directly.

Motivation (III): why photon beam?

Spin density matrix elements (SDME)

$$\rho_{\lambda\lambda'}^{0} = \frac{1}{N} \sum_{\alpha,\lambda_{\gamma}} I_{\alpha;\lambda,\lambda_{\gamma}} I_{\alpha;\lambda',\lambda_{\gamma}}^{\dagger},$$
$$\rho_{\lambda\lambda'}^{1} = \frac{1}{N} \sum_{\alpha,\lambda_{\gamma}} I_{\alpha;\lambda,-\lambda_{\gamma}} I_{\alpha;\lambda',\lambda_{\gamma}}^{\dagger},$$

 $\alpha,\lambda,\lambda_{\gamma}$: helicities of nucleon, meson, photon

• Decay angular distributions in GJ frame $W(\cos \Theta) = N_1 \{ (1 - \rho_{00}^0) \sin^2 \Theta + \rho_{00}^0 \cos^2 \Theta \}$ Spin single-flip or non-flip $W(\Phi) = N_2 (1 - 2 \operatorname{Re} \rho_{1-1}^0 \cos 2\Phi)$ Interference of helicity double-flip and non-flip Pomeron exchange amplitude Titov and Lee, PRC67,065205 $I_{fi}^P \sim -\delta_{\lambda_{\phi}\lambda_{\gamma}} \overline{u}_f k u_i + \delta_{\lambda_{\phi}0} k_{\gamma} \overline{u}_f k_{\lambda_{\gamma}} u_i + \sqrt{2} \lambda_{\gamma} p_x \frac{k \cdot q}{2\pi - k_{\gamma} - k_{\gamma}$

$$\frac{\partial \chi_{\phi}\chi_{\gamma}u_{f}\kappa u_{i}}{\text{non-flip}} = \frac{\partial \chi_{\phi}\lambda_{\phi}u_{i}}{\sqrt{2}\chi_{\gamma}p_{x}} \frac{1}{2p \cdot k - k \cdot q} \frac{u_{f}\varepsilon_{\lambda_{\phi}}u_{i}}{\frac{1}{2p \cdot k - k \cdot q}}$$

$$V(\Phi - \Psi) = N_{3}\left\{1 + 2P_{\gamma}\overline{\rho}_{1-1}^{1}\cos 2(\Phi - \Psi)\right\}$$
Parity of exchanged particle in t-channel

u: nucleon w.f. k, p_x : photon mom. nucleon momentum in x

_0.4

0.2

0.2

Production

plane

1.8

1.8

photon

Motivation (III): why photon beam?

• For helicity-conserving processes, parity asymmetry is

$$\rho_{1-1}^{1} = -\mathrm{Im}\rho_{1-1}^{2} \qquad \rho_{1-1}^{1} = \frac{1}{2} \frac{|I_{0}^{N}|^{2} - |I_{0}^{U}|^{2}}{|I_{0}^{N}|^{2} + |I_{0}^{U}|^{2}}$$

Natural (unnatural) parity exchange amplitudes

✓ Pure natural-parity exchange: $(\rho_{1-1}^1 - Im\rho_{1-1}^2)/2 = +0.5$ ✓ Pure unnatural-parity exchange: $(\rho_{1-1}^1 - Im\rho_{1-1}^2)/2 = -0.5$

Parity filter for t-channel reaction

Previous measurements (I) $\gamma p \rightarrow \phi p$

- W(cos θ) $\rightarrow \rho^{0}_{00} \rightarrow$ No helicity single-flip.
- $\rho_{1-1}^1 \sim 0.2 \rightarrow N/(N+UN) \sim 0.7 \rightarrow Strong natural parity exchange (no energy dependence).$

Previous measurements (II) $\gamma \: D \to \phi \: D$

Note: pion exchange is forbidden due to isospin conservation.

Pomeron, η exchange model underestimates the data.

φ-meson from ⁴He analysis

Angular distributions E1: $1.985 < E_{\gamma} < 2.185$ GeV, E2: $2.185 < E_{\gamma} < 2.385$ GeV

 $W(\cos \Theta) = N_1 \{ (1 - \rho_{00}^0) \sin^2 \Theta + \rho_{00}^0 \cos^2 \Theta \}$ $W(\Phi) = N_2 (1 - 2 \operatorname{Re} \rho_{1-1}^0 \cos 2\Phi)$ $W(\Phi - \Psi) = N_3 \{ 1 + 2 P_\gamma \overline{\rho}_{1-1}^1 \cos 2(\Phi - \Psi) \}$

Decay angular distributions E1: 1.985<E_y<2.185 GeV, E2: 2.185<E_y<2.385 GeV

Comparison of SDME with p, d data

- Natural parity exchange Pomeron exchange dominates.
- 10~13% deviation from pure natural parity exchange
- A) Contribution of unnatural parity exchange? ($f_1, J^{PC}=1^{++}$)? Due to the heavy mass, it is expected to be suppressed...
- B) Violation of the assumption of helicity-conservation?
- Non zero ρ⁰₁₋₁ also indicates spin-double-flip amplitude (PRC67,065205)
- Exchange of tensor particle?
- Theoretical inputs and advices are welcome!

Results of the $d\sigma/d\tilde{t}$ **measurements**

 No significant energy dependence was observed.

$$\frac{d\sigma}{d\tilde{t}} = N_0 \exp(-b\tilde{t})$$

• Weighted mean of the *t*-slope

23.81 ± 0.95 (stat.)^{+5.15}_{-0.00} (syst.)

→ Consistent with $b(\gamma p \rightarrow \phi p) + b$ (Form Factor) = 3.3 + 22 = 25.3 (GeV⁻²).

$d\sigma/dt$ at t_{min}

LEPS II

Beam asymmetry (Σ) for η -meson photoproduction

LEPS II facility

Experimental setups @ LEPS II

BGOegg setup

- BGOegg E.M. Calorimeter
 - 1320 BGO crystals
 - polar angle 24-146 degrees
- Drift chamber (DC), forward time of flight (TOF) counters
- Physics data taking from 2014.
- η-meson measurement in this talk

Solenoid spectrometer

- 0.9 T solenoid magnet
- Time Projection Chamber, DC, TOF counters, barrel photon counters.
- First commissioning run in 2016.

Motivation

η meson photoproduction

- Isospin = $0 \rightarrow No$ coupling with Δ
- large strangeness component
 - Stronger coupling of N* to η than to pion may reveal strangeness content in N*. (ex. N(1535))

Setup and analysis

 $\gamma p \rightarrow \eta p$ $\rightarrow \gamma \gamma \gamma p$ BGOegg BGOegg or DC

Analysis for yield estimation

Preliminary results

Preliminary results

Belle

Production rates of hyperons and charmed baryons from e⁺e⁻ annihilation near $\Upsilon(4S)$

Baryon production rates in e⁺e⁻ collision

• $e^+e^- \rightarrow \gamma^* \rightarrow qq \rightarrow Haronization$

- ex) $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda + anything$
 - not $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda + anti-\Lambda$
- $\frac{\sigma}{\sigma_{had}(2J+1)} \propto \exp(-\alpha m_{had})$
 - Relativistic-string model

S.B. Chun, PLB 308(1993)153

- Diquark is important to explain high baryon rates
- Higher rates for Λ and Λ(1520) in ARGUS and LEP.
 - Feed down is subtracted?
 - Large error in ARGUS results.
- J=0, light (ud) diquark in Λ ?
 - R.L. Jaffe, Phys.Rept.409,1 (2005)
 - A. Selem, F. Wilczek, hep-ph/0602128

Diquark structure in hadrons

- Color magnetic interaction
 - Strong attraction in spin 0 flavor 0 channel $\frac{\alpha}{m_i m_j} \frac{\lambda^a(i)}{2} \frac{\lambda^a(j)}{2} \vec{\sigma}(i) \cdot \vec{\sigma}(j)$
 - "Good" diquark
- Structure of Λ , Σ hyperons

S=1 [ud] "bad" diquark

Diquark structure in hadrons

- Color magnetic interaction
 - Strong attraction in spin 0 flavor 0 channel $\frac{\alpha}{m_i m_j} \frac{\lambda^a(i)}{2} \frac{\lambda^a(j)}{2} \vec{\sigma}(i) \cdot \vec{\sigma}(j)$
 - "Good" diquark
- Structure of Λ_c , Σ_c baryons

S=1 [ud] "bad" diquark

Belle data

Integrated luminosity

- : 562. fb⁻¹ @ on $\Upsilon(4S)$ resonance data for charmed baryons
- $(\sqrt{s} = 10.58 \text{ GeV})$: 79.3 fb⁻¹@ continuum data for hyperons, charmed baryons $(\sqrt{s} = 10.52 \text{ GeV})$

Mass spectra for hyperons

Mass spectra for charmed baryons

"Inclusive" cross sections vs.⁺x_p

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (x_p). $x_p = p/\sqrt[3]{s/4} - M^2$ (M, p : mass and CM momentum)

"Inclusive" cross sections vs.⁺x_p

"Inclusive" cross sections (including feed-down) are obtained as a function of hadron scaled momentum (x_p). $x_p = p/\sqrt[3]{s/4} - M^2$ (M, p : mass and CM momentum)

"Inclusive" cross sections vs. x

36

"Inclusive" cross sections vs. x

J 37

Results of hyperons

- Subtract feed down from heavier states;
 - 68% of inclusive Λ
 - 17% of inclusive Σ⁰
 - 25% of inclusive $\Lambda(1520)$
 - 8% of inclusive Σ(1385)⁺
 - 24% of inclusive Ξ^{-}

Results of charmed baryons

- Subtract feed-down
 - 52% of inclusive Λ_c^+
 - 16% of inclusive Σ_c^{0}

Results of charmed baryons

• Assuming that a c-quark picks up a diquark from vacuum, ("tunnel effect" of diquark and anti-diquark)

 $\sigma \propto \exp(-\pi \mu^2/\kappa) \qquad \begin{array}{l} \mu: \text{ diquark mass} \\ \kappa: \text{ gluonic string tension} \end{array}$ B. Andersson et al., Phys. Scripta. 32, 574 (1985) Mass difference of spin-1 and 0 diquarks $m(ud_1)^2 - m(ud_0)^2$ $= (8.2 \pm 0.8) \times 10^4 \ (\text{MeV}/c^2)^2$ ref. $490^2 - 420^2 = 6.4 \times 10^4 \ (\text{MeV}/c^2)^2$ B. Andersson et al., Phys. Rept. 97, 31 (1983)

slightly larger but consistent with diquark masses in reference

• Support diquark structure in ground and low-lying Λ_c , Σ_c baryons T. Yoshida et al., PRD92 114029 (2015)

> of hadrons
>mething unexpected

mparison of $\Lambda, \Sigma, \Lambda(1405)...$)

Summary

- LEPS: coherent ϕ -meson photoproduction from ⁴He
 - Isospin=0 and spin=0 target→No pseudo-scaler exchange
 - SDM elements exhibit
 - no helicity single-filp amplitude,
 - natural parity exchange dominance,
 - 10-13% discrepancies from full natural parity ex. may suggest axialvector ex. or double-helicity-flip amplitude (ex. of tensor object)
 - E_{γ} dependence of d σ /dt at t=t_{min} show monotonic increase
 - 2.7 σ deviation near E_y = 2.2 GeV
- LEPS2: beam asymmetry (Σ) for η -meson
 - Energy range up to $\sqrt{s}=2.32$ GeV
 - Polar angular distribution changes from $\sqrt{s=1.92}$ GeV,
- Belle: production rates of hyperons and charmed baryons
 - Clear exponential dependence on baryon masses
 - No enhancements for Λ , Λ (1520)
 - Suppression of decuplet hyperons and $\Sigma_{\rm c}$ family
 - Suggesting diquark structure in ground and low-lying Λ_c , Σ_c