Hyperon transition form factors at low energies

Stefan Leupold

Uppsala University

ECT* Trento, May 2017

Table of Contents

² [Theory for low-energy form factors](#page-5-0)

Historical remark

first hints for compositeness of proton came from

o non-trivial gyromagnetic ratio $\neq 2$

Historical remark

first hints for compositeness of proton came from

• non-trivial gyromagnetic ratio $\neq 2$

and from

Gell-Mann's multiplets containing strange hadrons

 \hookrightarrow expect valuable information from combining electromagnetism and strangeness

Electromagnetic form factors of hyperons

to large extent terra incognita

- electron-hyperon scattering complicated
- \rightsquigarrow instead:
	- reactions $e^+\,e^-\to$ hyperon anti-hyperon $(\,Y_1 \,\,\bar Y_2)\leadsto$ BESIII
	- \hookrightarrow form factors and transition form factors for large time-like $q^2 > (m_{Y_1} + m_{Y_2})^2$ (time-like means $q^2>0$, i.e. energy transfer $>$ momentum transfer)
		- decays $Y_1 \rightarrow Y_2 e^+ e^- \rightsquigarrow \text{HADES+PANDA}$
	- \hookrightarrow transition form factors for small time-like $q^2 < (m_{Y_1} m_{Y_2})^2$

• in general theorists aim for a good description/prediction of observables

- in general theorists aim for a good description/prediction of observables
- \hookrightarrow but sometimes "good" is not good enough ...

- \bullet in general theorists aim for a good description/prediction of observables
- \hookrightarrow but sometimes "good" is not good enough ...
- ... if one needs to know how good the theory is,
	- i.e. if one needs a reliable estimate of the theory uncertainty
	- examples:
		- determination of standard-model parameters (e.g. quark masses)
		- hadronic contributions to high-precision standard model predictions (e.g. gyromagnetic ratio of muon[∗])
- \rightarrow develop/use effective field theories (EFTs) and/or fundamental principles plus data (dispersion theory)
	- systematically improvable, reliable uncertainty estimate
	- **•** cannot hurt to develop such a framework for hyperons
- * see also Hoferichter/Kubis/SL/Niecknig/Schneider, Eur.Phys.J. C74, 3180 (2014)

existing (in EFT spirit):

- \bullet for octet: chiral perturbation theory (EFT), Kubis/Meißner, Eur. Phys. J. C 18, 747 (2001)
- \rightarrow predictions for electric and magnetic radii $($ = slopes of form factors)
- \hookrightarrow shortcomings: no explicit decuplet, no explicit vector mesons
- \hookrightarrow for curvatures one already needs vector mesons
	- for transitions decuplet-octet: chiral perturbation theory for Δ -N, Pascalutsa/Vanderhaeghen/Yang, Phys. Rept. 437, 125 (2007)
- \leftrightarrow no vector mesons and not for hyperons

Theory for hyperon low-energy form factors

new approach:

- hadronic chiral perturbation theory plus dispersion theory
- \leftrightarrow easier to include decuplet
- \hookrightarrow dispersion theory includes ρ meson as measured in π - π
	- Σ^0 - Λ transition form factors: C. Granados, E. Perotti, SL, arXiv:1701.09130 [hep-ph]
- \hookrightarrow some results on next slides
	- decuplet-octet transitions:
		- E. Perotti, O. Junker, SL, work in progress

technically very similar: J.M. Alarcón, A.N. Hiller Blin, M.J. Vicente Vacas, C. Weiss, arXiv:1703.04534 [hep-ph]

Unitarity and analyticity

- **o** constraints from local quantum field theory: partial-wave amplitudes for reactions/decays must be
	- unitary:

$$
S S^{\dagger} = 1, \quad S = 1 + iT \quad \Rightarrow \quad 2 \operatorname{Im} T = T T^{\dagger}
$$

 \leftrightarrow note that this is a matrix equation: $\mathrm{Im}\, \mathcal{T}_{\mathcal{A}\rightarrow\mathcal{B}}=\sum_{X}\, \mathcal{T}_{\mathcal{A}\rightarrow X}\, \mathcal{T}_X^\dagger$ $X \rightarrow B$ \rightarrow in practice: use most relevant intermediate states X • analytical (dispersion relations):

$$
T(q^2) = T(0) + \frac{q^2}{\pi} \int_{-\infty}^{\infty} ds \frac{\operatorname{Im} T(s)}{s (s - q^2 - i\epsilon)}
$$

 \rightarrow can be used to calculate whole amplitude from imaginary part

Pion vector form factor

pion phase shift very well known; fits to pion vector form factor Sebastian P. Schneider, Bastian Kubis, Franz Niecknig, Phys.Rev.D86:054013,2012

Hyperon-pion scattering amplitudes

- "right-hand cuts" (pion rescattering) \hookrightarrow straightforward from
	- unitarity and analyticity (and experimental pion phase shift)

• and rest:

left-hand cuts, polynomial terms

- \leftrightarrow not straightforward
- \leftrightarrow use three-flavor baryon chiral perturbation theory

Input for hyperon-pion scattering amplitudes

- ideally use data
- \rightarrow available for pion-nucleon, but not for pion-hyperon
- \rightarrow instead: three-flavor baryon chiral perturbation theory (χ PT) at leading and next-to-leading order (NLO) including decuplet states (optional for $\Sigma^0 \to \Lambda$ transition)

χ PT input for hyperon-pion scattering amplitudes

how to determine three-point coupling constants:

- Σ-Λ- π and Σ-Σ- π related to weak octet decays $(F$ and D parameter)
- Σ^* -Λ- π and Σ^* -Σ- π from Σ^* decays (h_A) = π -

interesting observations:

- pole of Σ -exchange contribution is close to 2π threshold
- \hookrightarrow creates structure, i.e. energy dependence, that is not covered by simple vector-meson dominance models see also Frazer/Fulco, Phys.Rev. 117, 1609 (1960)
	- in general (away from threshold): large cancelation between Σ - and Σ^* -exchange
- \hookrightarrow inclusion of decuplet is not an option but a necessity

χ PT input for hyperon-pion scattering amplitudes

how to determine NLO four-point coupling constants:

- only one parameter (b_{10}) for Σ-Λ transition
- \hookrightarrow but not very well known
	- **•** "resonance saturation" estimates Meißner/Steininger/Kubis, Nucl.Phys. B499, 349 (1997); Eur.Phys.J. C18, 747 (2001)
	- or from fit to πN and KN scattering data with coupled-channel Bethe-Salpeter approach Lutz/Kolomeitsev, Nucl.Phys. A700, 193 (2002)
		- maybe in the future: cross-check from lattice QCD

parameter is directly related to magnetic transition radius of $Σ$ -Λ

Uncertainties of input

- **o** parameter variations:
	- 2.2 $< h_A < 2.4$
	- 0.85 **(in inverse GeV)**

(Lutz/Kolomeitsev value is at lower edge)

- cut off formal $\Sigma \bar{\Lambda} \to \pi^+ \pi^-$ amplitude when other channels except for 2π become important
- \hookrightarrow physically at $K\bar{K}$ threshold, but at the latest at $\Sigma\bar{\Lambda}$ threshold
- \rightarrow vary cutoff in range 1-2 GeV (mild effect)
	- NNLO corrections not yet calculated
- \leftrightarrow no reliable uncertainty estimates yet
	- variations in input for pion phase shift not explored yet, but expected to be small

Colangelo/Gasser/Leutwyler, Nucl.Phys. B603, 125 (2001)

Garcia-Martin/Kaminski/Pelaez/Ruiz de Elvira/Yndurain, Phys.Rev. D83, 074004 (2011)

First results

- shows electric (helicity non-flip) part of formal $\Sigma \bar{\Lambda} \to \pi^+ \pi^-$ p-wave amplitude (real part, sub threshold)
- impact of ρ meson visible when comparing "full" (dispersive) vs. "bare" (χ PT input)
- inclusion of decuplet exchange ("res") important

Transition form factors Σ-Λ

- electric transition form factor very small over large range
- \hookrightarrow what one might measure at low energies is magnetic transition form factor
- \hookrightarrow data integrated over Λ - e^- angle, but differential in q^2 might be sufficient
	- note: Dalitz decay region 4 $m_e^2 < q^2 < (m_{\Sigma} m_{\Lambda})^2$ hardly visible here

Magnetic transition form factor Σ-Λ

- large uncertainty
- \hookrightarrow directly related to uncertainty in NLO low-energy constant b_{10}
- \hookrightarrow can be determined from measuring magnetic transition radius

Summary

structure of hadrons

- **•** learned a lot about hadrons from electromagnetic probes
- ... from strangeness
- \leftrightarrow high time to combine these lines of research
- \rightarrow electromagnetic (transition) form factors of hyperons
	- at low energies: decays $Y_A \rightarrow Y_B e^+e^-$
	- not even all decays $Y_A \rightarrow Y_B \gamma$ are measured for initial decuplet states
	- **•** complementary theory program: combining dispersion theory with baryon octet+decuplet chiral perturbation theory
- \hookrightarrow first results: electric part of Σ - Λ transition very small; magnetic part can be predicted if radius is measured (slope at photon point)

Outlook — speculation

beyond exploring structure of hadrons \rightsquigarrow baryonic CP violation

- important for baryon asymmetry of universe (if C is violated) and for strong CP problem
- never observed so far (recently 3σ evidence from LHCb)
- standard observables: angular distributions in weak decays of hyperons vs. antihyperons
- maybe worth to explore: angular distribution in $Y_A \rightarrow \gamma Y_B \rightarrow \gamma \pi h$ (related to electric dipole moments)
- \hookrightarrow S. Nair, SL, work in progress

terra incognita hic sunt dracones

 $\mathsf{\Sigma}^0 \to \mathsf{\Lambda} \, \gamma$

- branching ratio is $\approx 100\%$
- **•** basic: differential distribution for $\Sigma^0 \rightarrow$ $\Lambda \, \gamma \rightarrow p \pi^- \, \, \gamma$

- why could this be interesting?
- \hookrightarrow parity symmetry of first decay demands isotropic distribution in $\cos \theta$ (as measured in Λ rest frame)
- ,→ advanced:

check for deviation from isotropy as sign for baryonic P and CP violation

backup slides

$\Sigma^0 \rightarrow \Lambda e^+e^-$

- basic: branching ratio (QED prediction $5 \cdot 10^{-3}$)
- advanced: differential distribution: resolve effect from non-trivial transition form factors G_F , G_M

$$
\frac{d^2\Gamma}{dq^2\,dz}\sim \left\{|\,G_E(q^2)|^2\,(m_\Lambda+m_\Sigma)^2\,(1\!-\!z^2)\!+\!|\,G_M(q^2)|^2\,q^2\,(1\!+\!z^2)\right\}
$$

as compared to (leading-order) QED prediction

$$
\frac{d^2\Gamma_{\rm QED}}{dq^2\,dz}\sim \mu_{\Sigma\Lambda}^2\,q^2\,(1+z^2)
$$

with transition magnetic moment $\mu_{\Sigma\Lambda}$ (known from $\Sigma^0\to\Lambda\,\gamma)$

• note: proportionality factor is function of $q := p_{e^+} + p_{e^-}$, but not of $z := cos(angle(e^{-}, \Lambda)$ in dilepton rest frame)

Challenge to extract form factors

- $\Sigma^0 \rightarrow$ Λ e^+e^- does not produce large invariant masses for the lepton pair, $q^2 < (77$ MeV) 2
- \hookrightarrow transition form factor is close to unity (normalization at photon point)
- \rightarrow need high precision in experiment and theory to deduce transition form factor
- \leftrightarrow expect effects on 1-2% level
- \hookrightarrow effects from form factor compete with QED corrections
- \leftrightarrow tedious but calculable
	- (T. Husek and SL, in preparation)

Full formulae for differential distribution

double differential decay width $\Sigma^0 \to \Lambda e^+e^-$:

$$
\frac{d^2\Gamma}{ds\,dz} = \frac{1}{(2\pi)^3 64 m_{\Sigma}^3} \,\lambda^{1/2} (m_{\Sigma}^2, s, m_{\Lambda}^2) \,\left(1 - \frac{4m_e^2}{s}\right)^{1/2} \,\overline{|\mathcal{M}|^2}
$$

$$
\overline{|\mathcal{M}|^2} = \frac{e^4}{s^2} 2((m_{\Sigma} - m_{\Lambda})^2 - s)
$$

$$
\left\{ |G_E(s)|^2 (m_{\Lambda} + m_{\Sigma})^2 \left(1 - \left(1 - \frac{4m_e^2}{s} \right) z^2 \right) + |G_M(s)|^2 (s (1 + z^2) + 4m_e^2 (1 - z^2)) \right\}.
$$

note: electron mass neglected in main presentation independent kinematical variables defined on next slide

Full formulae for differential distribution, cont.

independent kinematical variables:

 $\mathsf{s} := (p_{e^+} + p_{e^-})^2 = q^2$ z is cos of angle between e^- and Λ in rest frame of dilepton

$$
z:=\frac{\Delta m^2}{\left(\Delta m^2\right)_{\rm max}}
$$

with $\Delta m^2 := (p_{e^+} + p_{\Lambda})^2 - (p_{e^-} + p_{\Lambda})^2$ and

$$
(\Delta m^2)_{\text{max}} := \lambda^{1/2} (m_{\Sigma}^2, s, m_{\Lambda}^2) \sqrt{1 - \frac{4m_e^2}{s}}.
$$

kinematical variables cover the ranges $z \in [-1,1]$ and $4m_e^2 \leq s \leq (m_{\Sigma} - m_{\Lambda})^2$

Källén function $\lambda(a, b, c) := a^2 + b^2 + c^2 - 2(ab + bc + ac)$

Confessions of a theorist:

- every theorist has favorite toys
- **•** mine are at the moment effective field theories (EFT) and dispersion theory
- \rightarrow some arguments in favor of this choice:

Confessions of a theorist:

- every theorist has favorite toys
- **•** mine are at the moment effective field theories (EFT) and dispersion theory
- \rightarrow some arguments in favor of this choice:
	- effective theories are systematic \leftrightarrow phenom. models are not

"systematic" means that one can estimate the theory uncertainty/precision

- dispersion theory uses data instead of phenomenological models
- \hookrightarrow (improvable) data uncertainties instead of (not improvable) model uncertainties

Confessions of a theorist:

- every theorist has favorite toys
- **•** mine are at the moment effective field theories (EFT) and dispersion theory
- \rightarrow some arguments in favor of this choice:
	- effective theories are systematic \leftrightarrow phenom. models are not

"systematic" means that one can estimate the theory uncertainty/precision

- dispersion theory uses data instead of phenomenological models
- \leftrightarrow (improvable) data uncertainties instead of (not improvable) model uncertainties

but: not for every problem there exists an effective theory; dispersion theory not of practical use if one has to deal with too many channels, too many particles

Example: effective theory \leftrightarrow phenom. model

• determine potential energy of object with mass m and height h above ground

figure from wikipedia

 \hookrightarrow develop phenomenological model:

$$
V_{\text{pheno}}(h) = m g h \tag{1}
$$

- perform measurements for some h (and m) to determine g
- \hookrightarrow obtain predictive power for any h

Example: effective theory \leftrightarrow phenom. model

• determine potential energy of object with mass m and height h above ground

figure from wikipedia

 \hookrightarrow develop phenomenological model:

$$
V_{\text{pheno}}(h) = m g h \tag{1}
$$

- perform measurements for some h (and m) to determine g
- \hookrightarrow obtain predictive power for any h?
- \hookrightarrow if [\(1\)](#page-32-0) is not completely correct, then how accurate is it?
- \rightarrow phenomenological model cannot answer this, effective theory can

credits for this example: Emil Ryberg, Gothenburg

Example: effective theory \leftrightarrow phenom. model

- \bullet determine potential energy of object with mass m and height h above ground
- \leftrightarrow effective theory (systematic):

$$
V_{\text{eff}}(h) = m (g h + g_2 h^2 + g_3 h^3 + ...)
$$
 (2)

- **•** how to use it:
	- truncate [\(2\)](#page-34-0) e.g. after $\mathcal{O}(h^2)$ and perform measurements to determine g and g_2
	- theory uncertainty/accuracy $\Delta V \approx |g_2 h^2|$
	- if unsatisfied with accuracy
	- \hookrightarrow truncate [\(2\)](#page-34-0) only after $\mathcal{O}(h^3)$ and perform (more!) measurements to determine g , g_2 and g_3
		- \bullet . . .

\hookrightarrow systematically improvable

(but requires more and more measurements to gain predictive power)

Example: effective theory and fundamental theory

effective theory

$$
V_{\text{eff}}(h) = m (g h + g_2 h^2 + g_3 h^3 + \ldots)
$$

figure from wikipedia

 \bullet for this physics problem (potential energy \dots) Newton provided the fundamental theory:

$$
V_{\text{fund}}(h) = -\frac{GM\,m}{h+R} + \frac{GM\,m}{R}
$$

 \hookrightarrow parameters g, g_2, \ldots can be calculated instead of measured

- \hookrightarrow just Taylor expand in h/R
- \hookrightarrow range of applicability of effective theory is $h \ll R$
	- **•** effective theories always have a limited range of applicability

Back to hadrons

- **•** fundamental theory: QCD
- **e** effective field theory at low energies (below resonances): chiral perturbation theory
- there exist plenty of phenomenological models (and some colleagues call them "effective theories" :-(
- for region of hadronic resonances there is no established effective field theory (yet) (active field of research: Lutz, Kolomeitsev, SL, Scherer, Meißner, . . .)
- \hookrightarrow is there a way to get controlled theory uncertainties in the resonance region?
- \leftrightarrow dispersion theory! (sometimes)

Dispersion theory

- \bullet if a resonance
	- is important (e.g. vector mesons for electromagnetic reactions)
	- is known from rather well measured phase shifts
	- does not have too many decay channels

- \leftrightarrow use phase shifts instead of modeling
- \leftrightarrow dispersion theory
	- based on fundamental principles of local quantum field theory

Right- and left-hand cuts

$$
\operatorname{Im} T_{A\to B} = \sum_{X} T_{A\to X} T_{X\to B}^{\dagger}
$$

$$
\mathcal{T}(q^2) = \mathcal{T}(0) + \frac{q^2}{\pi} \int_{-\infty}^{\infty} ds \frac{\operatorname{Im} T(s)}{s (s - q^2 - i\epsilon)}
$$

• can be used to calculate whole amplitude from imaginary part \hookrightarrow but need to know imaginary part for all values of s, not only for physical ones restricted by thresholds s_{thr} of A, B, X

for instance, if $X = 2\pi$ then $s \ge 4m_\pi^2 = s_{\text{thr}}$ is physical range

$$
\hookrightarrow \int\limits_{s_{\mathrm{thr}}}^\infty ds \ldots \quad \rightsquigarrow \quad \text{``right-hand cut''}
$$

Right- and left-hand cuts

$$
T(q^2) = T(0) + \frac{q^2}{\pi} \int_{-\infty}^{\infty} ds \frac{\operatorname{Im} T(s)}{s (s - q^2 - i\epsilon)}
$$

- crossing symmetry: imaginary part in $s > s_{thr}$ leads in crossed channel to imaginary part in Mandelstam variable t (or u)
- but condition $t \geq s_{\text{thr}}$ is in crossed channel related to $s \leq \tilde{s}_{\text{thr}}$

$$
\hookrightarrow \int\limits_{-\infty}^{\tilde{s}_{\rm thr}} ds \ldots \quad \rightsquigarrow \quad \text{``left-hand cut''}
$$

- note: name "cut" is related to fact that amplitude has logarithmic structure
- \hookrightarrow Riemann sheets and cuts

Hyperon transition form factors

for $\Sigma/\Sigma^*\to\Lambda\,e^+e^-$ need transition form factors

- \leftrightarrow separate long- from short-range physics, universal from quark-structure specific features
- \rightarrow use dispersion theory and encode short-range physics in subtraction constants

Λ

 $\Sigma^{(*)}$ (∗)