Hyperon transition form factors at low energies

Stefan Leupold

Uppsala University

ECT* Trento, May 2017

Table of Contents

2 Theory for low-energy form factors

Historical remark

first hints for compositeness of proton came from

 non-trivial gyromagnetic ratio ≠ 2

Historical remark

first hints for compositeness of proton came from

 non-trivial gyromagnetic ratio ≠ 2

and from

• Gell-Mann's multiplets containing strange hadrons

 → expect valuable information from combining electromagnetism and strangeness

Electromagnetic form factors of hyperons

to large extent terra incognita

- electron-hyperon scattering complicated
- \rightsquigarrow instead:
 - reactions $e^+ e^- \rightarrow$ hyperon anti-hyperon ($Y_1 \ \bar{Y}_2$) \rightsquigarrow BESIII
 - \hookrightarrow form factors and transition form factors for large time-like $q^2 > (m_{Y_1} + m_{Y_2})^2$ (time-like means $q^2 > 0$, i.e. energy transfer > momentum transfer)
 - decays $Y_1 \rightarrow Y_2 \ e^+ \ e^- \rightsquigarrow \mathsf{HADES}+\mathsf{PANDA}$
 - \hookrightarrow transition form factors for small time-like $q^2 < (m_{Y_1} m_{Y_2})^2$

• in general theorists aim for a good description/prediction of observables

- in general theorists aim for a good description/prediction of observables
- \hookrightarrow but sometimes "good" is not good enough \ldots

- in general theorists aim for a good description/prediction of observables
- \hookrightarrow but sometimes "good" is not good enough \ldots
- ... if one needs to know how good the theory is,
 - i.e. if one needs a reliable estimate of the theory uncertainty
 - examples:
 - determination of standard-model parameters (e.g. quark masses)
 - hadronic contributions to high-precision standard model predictions (e.g. gyromagnetic ratio of muon*)
- → develop/use effective field theories (EFTs) and/or fundamental principles plus data (dispersion theory)
 - systematically improvable, reliable uncertainty estimate
 - cannot hurt to develop such a framework for hyperons
- * see also Hoferichter/Kubis/SL/Niecknig/Schneider, Eur.Phys.J. C74, 3180 (2014)

existing (in EFT spirit):

- for octet: chiral perturbation theory (EFT), Kubis/Meißner, Eur. Phys. J. C 18, 747 (2001)
- \hookrightarrow predictions for electric and magnetic radii (= slopes of form factors)
- \hookrightarrow shortcomings: no explicit decuplet, no explicit vector mesons
- \hookrightarrow for curvatures one already needs vector mesons
 - for transitions decuplet-octet: chiral perturbation theory for Δ-N, Pascalutsa/Vanderhaeghen/Yang, Phys. Rept. 437, 125 (2007)
- $\,\hookrightarrow\,$ no vector mesons and not for hyperons

Theory for hyperon low-energy form factors

new approach:

- hadronic chiral perturbation theory plus dispersion theory
- \hookrightarrow easier to include decuplet
- \hookrightarrow dispersion theory includes ρ meson as measured in $\pi\text{-}\pi$
 - Σ⁰-Λ transition form factors:
 C. Granados, E. Perotti, SL, arXiv:1701.09130 [hep-ph]
- \hookrightarrow some results on next slides
 - decuplet-octet transitions:
 - E. Perotti, O. Junker, SL, work in progress

technically very similar: J.M. Alarcón, A.N. Hiller Blin, M.J. Vicente Vacas, C. Weiss, arXiv:1703.04534 [hep-ph]

Unitarity and analyticity

- constraints from local quantum field theory: partial-wave amplitudes for reactions/decays must be
 - unitary:

$$S S^{\dagger} = 1$$
, $S = 1 + iT \Rightarrow 2 \operatorname{Im} T = T T^{\dagger}$

 → note that this is a matrix equation: Im *T*_{A→B} = ∑_X *T*_{A→X} *T*[†]_{X→B}
 ~→ in practice: use most relevant intermediate states *X* • analytical (dispersion relations):

$$T(q^2) = T(0) + rac{q^2}{\pi} \int\limits_{-\infty}^{\infty} ds \, rac{\mathrm{Im}\, T(s)}{s \, (s-q^2-i\epsilon)}$$

→ can be used to calculate whole amplitude from imaginary part

Stefan Leupold

Pion vector form factor

pion phase shift very well known; fits to pion vector form factor Sebastian P. Schneider, Bastian Kubis, Franz Niecknig, Phys.Rev.D86:054013,2012

Hyperon-pion scattering amplitudes

- "right-hand cuts" (pion rescattering)
 - → straightforward from unitarity and analyticity (and experimental pion phase shift)
- and rest:

left-hand cuts, polynomial terms

- \hookrightarrow not straightforward
- → use three-flavor baryon chiral perturbation theory

Input for hyperon-pion scattering amplitudes

- ideally use data
- $\,\hookrightarrow\,$ available for pion-nucleon, but not for pion-hyperon
- \hookrightarrow instead: three-flavor baryon chiral perturbation theory (χ PT) at leading and next-to-leading order (NLO) including decuplet states (optional for $\Sigma^0 \to \Lambda$ transition)

$\chi {\rm PT}$ input for hyperon-pion scattering amplitudes

how to determine three-point coupling constants:

- Σ-Λ-π and Σ-Σ-π related to weak octet decays (F and D parameter)
- Σ^* - Λ - π and Σ^* - Σ - π from Σ^* decays (h_A)

interesting observations:

- pole of Σ -exchange contribution is close to 2π threshold
- → creates structure, i.e. energy dependence, that is not covered by simple vector-meson dominance models see also Frazer/Fulco, Phys.Rev. 117, 1609 (1960)
 - in general (away from threshold): large cancelation between Σ- and Σ*-exchange
- \hookrightarrow inclusion of decuplet is not an option but a necessity

$\chi {\rm PT}$ input for hyperon-pion scattering amplitudes

how to determine NLO four-point coupling constants:

- only one parameter (b_{10}) for Σ - Λ transition
- \hookrightarrow but not very well known
 - "resonance saturation" estimates Meißner/Steininger/Kubis, Nucl.Phys. B499, 349 (1997); Eur.Phys.J. C18, 747 (2001)
 - or from fit to πN and KN scattering data with coupled-channel Bethe-Salpeter approach Lutz/Kolomeitsev, Nucl.Phys. A700, 193 (2002)
 - maybe in the future: cross-check from lattice QCD

Uncertainties of input

- parameter variations:
 - $2.2 < h_A < 2.4$
 - $0.85 < b_{10} < 1.35$ (in inverse GeV) (Lutz/Kolomeitsev value is at lower edge)
- cut off formal $\Sigma \overline{\Lambda} \to \pi^+ \pi^-$ amplitude when other channels except for 2π become important
- \hookrightarrow physically at $K\bar{K}$ threshold, but at the latest at $\Sigma\bar{\Lambda}$ threshold
- \hookrightarrow vary cutoff in range 1-2 GeV (mild effect)
 - NNLO corrections not yet calculated
- \hookrightarrow no reliable uncertainty estimates yet
 - variations in input for pion phase shift not explored yet, but expected to be small

Colangelo/Gasser/Leutwyler, Nucl.Phys. B603, 125 (2001)

Garcia-Martin/Kaminski/Pelaez/Ruiz de Elvira/Yndurain, Phys.Rev. D83, 074004 (2011)

First results

- shows electric (helicity non-flip) part of formal $\Sigma \bar{\Lambda} \rightarrow \pi^+ \pi^-$ p-wave amplitude (real part, sub threshold)
- impact of ρ meson visible when comparing "full" (dispersive) vs. "bare" (χ PT input)
- inclusion of decuplet exchange ("res") important

Transition form factors Σ - Λ

- electric transition form factor very small over large range
- → what one might measure at low energies is magnetic transition form factor
- \hookrightarrow data integrated over Λ - e^- angle, but differential in q^2 might be sufficient
 - note: Dalitz decay region $4m_e^2 < q^2 < (m_{\Sigma}-m_{\Lambda})^2$ hardly visible here

Magnetic transition form factor Σ - Λ

- large uncertainty
- \hookrightarrow directly related to uncertainty in NLO low-energy constant b_{10}
- \hookrightarrow can be determined from measuring magnetic transition radius

Summary

structure of hadrons

- learned a lot about hadrons from electromagnetic probes
- . . . from strangeness
- \hookrightarrow high time to combine these lines of research
- \rightsquigarrow electromagnetic (transition) form factors of hyperons
 - ullet at low energies: decays $Y_A \to Y_B \; e^+ e^-$
 - not even all decays $Y_A \rightarrow Y_B \gamma$ are measured for initial decuplet states
 - complementary theory program: combining dispersion theory with baryon octet+decuplet chiral perturbation theory
- \hookrightarrow first results: electric part of Σ - Λ transition very small; magnetic part can be predicted if radius is measured (slope at photon point)

Outlook — speculation

beyond exploring structure of hadrons \rightsquigarrow baryonic CP violation

- important for baryon asymmetry of universe (if C is violated) and for strong CP problem
- never observed so far (recently 3σ evidence from LHCb)
- standard observables: angular distributions in weak decays of hyperons vs. antihyperons
- maybe worth to explore: angular distribution in $Y_A \rightarrow \gamma Y_B \rightarrow \gamma \pi h$ (related to electric dipole moments)
- \hookrightarrow S. Nair, SL, work in progress

terra incognita ...

... hic sunt dracones

 $\Sigma^0 \to \Lambda \gamma$

- $\bullet\,$ branching ratio is $\approx 100\%\,$
- basic: differential distribution for $\Sigma^0 \to \Lambda \gamma \to p \pi^- \gamma$

- why could this be interesting?
- \hookrightarrow parity symmetry of first decay demands isotropic distribution in $\cos \theta$ (as measured in Λ rest frame)
- \hookrightarrow advanced:

check for deviation from isotropy as sign for baryonic P and CP violation

backup slides

$\Sigma^0 ightarrow \Lambda \ e^+ e^-$

- basic: branching ratio (QED prediction $5 \cdot 10^{-3}$)
- advanced: differential distribution; resolve effect from non-trivial transition form factors G_E, G_M

$$\frac{d^2\Gamma}{dq^2\,dz} \sim \left\{ |G_E(q^2)|^2 \, (m_{\Lambda} + m_{\Sigma})^2 \, (1 - z^2) + |G_M(q^2)|^2 \, q^2 \, (1 + z^2) \right\}$$

as compared to (leading-order) QED prediction

$$rac{d^2 \Gamma_{ ext{QED}}}{dq^2 \, dz} \sim \mu_{\Sigma \Lambda}^2 \, q^2 \left(1+z^2
ight)$$

with transition magnetic moment $\mu_{\Sigma\Lambda}$ (known from $\Sigma^0 \to \Lambda \gamma$)

 note: proportionality factor is function of q := p_{e⁺} + p_{e⁻}, but not of z :=cos(angle(e⁻, Λ) in dilepton rest frame)

Challenge to extract form factors

- $\Sigma^0 \rightarrow \Lambda e^+ e^-$ does not produce large invariant masses for the lepton pair, $q^2 < (77 \text{ MeV})^2$
- → transition form factor is close to unity (normalization at photon point)
- \hookrightarrow need high precision in experiment and theory to deduce transition form factor
- \hookrightarrow expect effects on 1-2% level
- \hookrightarrow effects from form factor compete with QED corrections
- \hookrightarrow tedious but calculable
 - (T. Husek and SL, in preparation)

Full formulae for differential distribution

double differential decay width $\Sigma^0
ightarrow \Lambda \, e^+ e^-$:

$$\frac{d^2\Gamma}{ds\,dz} = \frac{1}{(2\pi)^3\,64m_{\Sigma}^3}\,\lambda^{1/2}(m_{\Sigma}^2,s,m_{\Lambda}^2)\,\left(1-\frac{4m_e^2}{s}\right)^{1/2}\,\overline{|\mathcal{M}|^2}$$

$$\overline{|\mathcal{M}|^2} = \frac{e^4}{s^2} 2((m_{\Sigma} - m_{\Lambda})^2 - s) \\ \left\{ |G_E(s)|^2 (m_{\Lambda} + m_{\Sigma})^2 \left(1 - \left(1 - \frac{4m_e^2}{s} \right) z^2 \right) \right. \\ \left. + |G_M(s)|^2 (s (1 + z^2) + 4m_e^2 (1 - z^2)) \right\}.$$

note: electron mass neglected in main presentation independent kinematical variables defined on next slide

Full formulae for differential distribution, cont.

independent kinematical variables:

$$s:=(p_{e^+}+p_{e^-})^2=q^2$$

 z is cos of angle between e^- and Λ in rest frame of dilepton

$$z := \frac{\Delta m^2}{\left(\Delta m^2\right)_{\max}}$$

with $\Delta m^2 := (p_{e^+} + p_\Lambda)^2 - (p_{e^-} + p_\Lambda)^2$ and

$$\left(\Delta m^2
ight)_{ ext{max}} := \lambda^{1/2} (m_{\Sigma}^2, s, m_{\Lambda}^2) \sqrt{1 - rac{4m_e^2}{s}} \, .$$

kinematical variables cover the ranges $z \in [-1,1]$ and $4m_e^2 \le s \le (m_\Sigma - m_\Lambda)^2$

Källén function $\lambda(a, b, c) := a^2 + b^2 + c^2 - 2(ab + bc + ac)$

Confessions of a theorist:

- every theorist has favorite toys
- mine are at the moment effective field theories (EFT) and dispersion theory
- \hookrightarrow some arguments in favor of this choice:

Confessions of a theorist:

- every theorist has favorite toys
- mine are at the moment effective field theories (EFT) and dispersion theory
- \hookrightarrow some arguments in favor of this choice:
 - effective theories are systematic ↔ phenom. models are not "systematic" means that one can estimate the theory uncertainty/precision
 - dispersion theory uses data instead of phenomenological models
 - → (improvable) data uncertainties instead of (not improvable) model uncertainties

Confessions of a theorist:

- every theorist has favorite toys
- mine are at the moment effective field theories (EFT) and dispersion theory
- \hookrightarrow some arguments in favor of this choice:
 - effective theories are systematic ↔ phenom. models are not "systematic" means that one can estimate the theory uncertainty/precision
 - dispersion theory uses data instead of phenomenological models
 - → (improvable) data uncertainties instead of (not improvable) model uncertainties
- but: not for every problem there exists an effective theory; dispersion theory not of practical use if one has to deal with too many channels, too many particles

Example: effective theory \leftrightarrow phenom. model

 determine potential energy of object with mass *m* and height *h* above ground

figure from wikipedia

 \hookrightarrow develop phenomenological model:

$$V_{\rm pheno}(h) = m g h \tag{1}$$

- perform measurements for some h (and m) to determine g
- \hookrightarrow obtain predictive power for any h

Example: effective theory \leftrightarrow phenom. model

 determine potential energy of object with mass *m* and height *h* above ground

figure from wikipedia

 \hookrightarrow develop phenomenological model:

$$V_{\rm pheno}(h) = m g h \tag{1}$$

- perform measurements for some h (and m) to determine g
- \hookrightarrow obtain predictive power for any h?
- \hookrightarrow if (1) is not completely correct, then how accurate is it?
- \hookrightarrow phenomenological model cannot answer this, effective theory can

credits for this example: Emil Ryberg, Gothenburg

Example: effective theory \leftrightarrow phenom. model

- determine potential energy of object with mass *m* and height *h* above ground
- \hookrightarrow effective theory (systematic):

$$V_{\rm eff}(h) = m \left(g \ h + g_2 \ h^2 + g_3 \ h^3 + \ldots \right)$$
 (2)

- how to use it:
 - truncate (2) e.g. after $\mathcal{O}(h^2)$ and perform measurements to determine g and g_2
 - theory uncertainty/accuracy $\Delta V pprox |g_2 \ h^2|$
 - if unsatisfied with accuracy
 - \hookrightarrow truncate (2) only after $\mathcal{O}(h^3)$ and perform (more!) measurements to determine g, g_2 and g_3
 - . . .

$\hookrightarrow \ \text{systematically improvable}$

(but requires more and more measurements to gain predictive power)

Example: effective theory and fundamental theory

effective theory

$$V_{\rm eff}(h) = m \left(g \ h + g_2 \ h^2 + g_3 \ h^3 + \ldots\right)$$

figure from wikipedia

• for this physics problem (potential energy ...) Newton provided the fundamental theory:

$$V_{
m fund}(h) = -rac{G \ M \ m}{h+R} + rac{G \ M \ m}{R}$$

- \hookrightarrow parameters g, g_2 , ... can be calculated instead of measured
- \hookrightarrow just Taylor expand in h/R
- \hookrightarrow range of applicability of effective theory is $h \ll R$
 - effective theories always have a limited range of applicability

Back to hadrons

- fundamental theory: QCD
- effective field theory at low energies (below resonances): chiral perturbation theory
- there exist plenty of phenomenological models (and some colleagues call them "effective theories" :-(
- for region of hadronic resonances there is no established effective field theory (yet) (active field of research: Lutz, Kolomeitsev, SL, Scherer, Meißner, ...)
- \hookrightarrow is there a way to get controlled theory uncertainties in the resonance region?
- \hookrightarrow dispersion theory! (sometimes)

Dispersion theory

- if a resonance
 - is important (e.g. vector mesons for electromagnetic reactions)
 - is known from rather well measured phase shifts
 - does not have too many decay channels

- \hookrightarrow use phase shifts instead of modeling
- \hookrightarrow dispersion theory
 - based on fundamental principles of local quantum field theory

Right- and left-hand cuts

$$\operatorname{Im} T_{A \to B} = \sum_{X} T_{A \to X} T^{\dagger}_{X \to B}$$
$$T(q^2) = T(0) + \frac{q^2}{\pi} \int_{-\infty}^{\infty} ds \, \frac{\operatorname{Im} T(s)}{s \, (s - q^2 - i\epsilon)}$$

 can be used to calculate whole amplitude from imaginary part
 → but need to know imaginary part for all values of s, not only for physical ones restricted by thresholds s_{thr} of A, B, X

• for instance, if $X = 2\pi$ then $s \ge 4m_{\pi}^2 = s_{\text{thr}}$ is physical range

$$\hookrightarrow \int_{\mathbf{s}_{thr}}^{\infty} ds \dots \quad \rightsquigarrow \quad \text{``right-hand cut''}$$

Right- and left-hand cuts

$$T(q^2) = T(0) + \frac{q^2}{\pi} \int_{-\infty}^{\infty} ds \frac{\operatorname{Im} T(s)}{s \left(s - q^2 - i\epsilon\right)}$$

- crossing symmetry: imaginary part in $s \ge s_{thr}$ leads in crossed channel to imaginary part in Mandelstam variable t (or u)
- but condition $t \geq s_{
 m thr}$ is in crossed channel related to $s \leq \widetilde{s}_{
 m thr}$

$$\hookrightarrow \int_{-\infty}^{\tilde{s}_{thr}} ds \dots \quad \rightsquigarrow \quad \text{``left-hand cut''}$$

- note: name "cut" is related to fact that amplitude has logarithmic structure
- \hookrightarrow Riemann sheets and cuts

Hyperon transition form factors

- for $\Sigma/\Sigma^*
 ightarrow \Lambda \, e^+ e^-$ need transition form factors ------
- → separate long- from short-range physics, universal from quark-structure specific features
- \hookrightarrow use dispersion theory and encode short-range physics in subtraction constants

