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Historical remark

first hints for compositeness
of proton came from

non-trivial gyromagnetic
ratio 6= 2

and from

Gell-Mann’s multiplets
containing strange hadrons

↪→ expect valuable information
from combining
electromagnetism and
strangeness
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Electromagnetic form factors of hyperons

to large extent
terra incognita

electron-hyperon scattering complicated
 instead:

reactions e+ e− → hyperon anti-hyperon (Y1 Ȳ2)  BESIII
↪→ form factors and transition form factors

for large time-like q2 > (mY1 + mY2)2

(time-like means q2 > 0, i.e. energy transfer > momentum transfer)

decays Y1 → Y2 e+ e−  HADES+PANDA
↪→ transition form factors for small time-like q2 < (mY1 −mY2)2
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Theory for low-energy form factors

in general theorists aim for a good description/prediction of
observables

↪→ but sometimes “good” is not good enough . . .

. . . if one needs to know how good the theory is,
i.e. if one needs a reliable estimate of the theory uncertainty
examples:

determination of standard-model parameters (e.g. quark masses)
hadronic contributions to high-precision standard model
predictions (e.g. gyromagnetic ratio of muon∗)

↪→ develop/use effective field theories (EFTs)
and/or fundamental principles plus data (dispersion theory)

systematically improvable, reliable uncertainty estimate

cannot hurt to develop such a framework for hyperons

* see also Hoferichter/Kubis/SL/Niecknig/Schneider, Eur.Phys.J. C74, 3180 (2014)
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Theory for baryon low-energy form factors

existing (in EFT spirit):

for octet: chiral perturbation theory (EFT),
Kubis/Meißner, Eur. Phys. J. C 18, 747 (2001)

↪→ predictions for electric and magnetic radii
(= slopes of form factors)

↪→ shortcomings: no explicit decuplet, no explicit vector mesons

↪→ for curvatures one already needs vector mesons

for transitions decuplet-octet:
chiral perturbation theory for ∆-N ,
Pascalutsa/Vanderhaeghen/Yang, Phys. Rept. 437, 125 (2007)

↪→ no vector mesons and not for hyperons
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Theory for hyperon low-energy form factors

new approach:

hadronic chiral perturbation theory plus dispersion theory

↪→ easier to include decuplet

↪→ dispersion theory includes ρ meson as measured in π-π

Σ0-Λ transition form factors:
C. Granados, E. Perotti, SL, arXiv:1701.09130 [hep-ph]

↪→ some results on next slides

decuplet-octet transitions:
E. Perotti, O. Junker, SL, work in progress

technically very similar: J.M. Alarcón, A.N. Hiller Blin, M.J. Vicente Vacas, C. Weiss,

arXiv:1703.04534 [hep-ph]
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Unitarity and analyticity

constraints from local quantum field theory:
partial-wave amplitudes for reactions/decays must be

unitary:

S S† = 1 , S = 1 + iT ⇒ 2 ImT = T T †

↪→ note that this is a matrix equation:
ImTA→B =

∑
X TA→X T †X→B

 in practice: use most relevant intermediate states X
analytical (dispersion relations):

T (q2) = T (0) +
q2

π

∞∫
−∞

ds
ImT (s)

s (s − q2 − iε)

 can be used to calculate whole amplitude from imaginary part
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Hyperon transition form factors
for Σ/Σ∗ → Λ e+e− need transition form factors

Λ

Σ(∗)

dispersive framework: at low energies q2 dependence is governed
by lightest intermediate states

↪→ obtain

Λ

Σ(∗)

from

Λ

Σ(∗)

π−

π+

↪→ need pion vector form factor

π−

π+

and hyperon-pion scattering amplitudes

π

π

Λ

Σ(∗)
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Pion vector form factor
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pion phase shift very well known; fits to pion vector form factor
Sebastian P. Schneider, Bastian Kubis, Franz Niecknig, Phys.Rev.D86:054013,2012
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Hyperon-pion scattering amplitudes

π

π

Λ

Σ(∗)

contain

“right-hand cuts” (pion rescattering)

↪→ straightforward from
unitarity and analyticity
(and experimental pion phase shift)

and rest:
left-hand cuts, polynomial terms

↪→ not straightforward
↪→ use three-flavor baryon chiral

perturbation theory

π

π

Λ

Σ(∗)

π

π

π

π

Λ

Σ(∗)

= ?
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Input for hyperon-pion scattering amplitudes

ideally use data

↪→ available for pion-nucleon, but not for pion-hyperon

↪→ instead: three-flavor baryon chiral perturbation theory (χPT)
at leading and next-to-leading order (NLO)
including decuplet states (optional for Σ0 → Λ transition)

π

π

Λ

Σ(∗)

≈
π

π

Λ

Σ(∗)

Σ/Σ∗ +
π

π

Λ

Σ(∗)
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χPT input for hyperon-pion scattering amplitudes

how to determine three-point coupling constants:

Σ-Λ-π and Σ-Σ-π related to weak octet
decays (F and D parameter)

Σ∗-Λ-π and Σ∗-Σ-π from Σ∗ decays (hA) π

π

Λ

Σ(∗)

Σ/Σ∗

interesting observations:

pole of Σ-exchange contribution is close to 2π threshold
↪→ creates structure, i.e. energy dependence,

that is not covered by simple vector-meson dominance models
see also Frazer/Fulco, Phys.Rev. 117, 1609 (1960)

in general (away from threshold):
large cancelation between Σ- and Σ∗-exchange

↪→ inclusion of decuplet is not an option but a necessity
13
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χPT input for hyperon-pion scattering amplitudes

how to determine NLO four-point coupling constants:

only one parameter (b10) for Σ-Λ transition

↪→ but not very well known

“resonance saturation” estimates
Meißner/Steininger/Kubis, Nucl.Phys. B499, 349 (1997);

Eur.Phys.J. C18, 747 (2001)

or from fit to πN and KN scattering data with
coupled-channel Bethe-Salpeter approach
Lutz/Kolomeitsev, Nucl.Phys. A700, 193 (2002)

maybe in the future:
cross-check from lattice QCD

π

π

Λ

Σ(∗)

parameter is directly related to magnetic transition radius of Σ-Λ
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Uncertainties of input

parameter variations:
2.2 < hA < 2.4
0.85 < b10 < 1.35 (in inverse GeV)
(Lutz/Kolomeitsev value is at lower edge)

cut off formal ΣΛ̄→ π+π− amplitude when other channels
except for 2π become important

↪→ physically at KK̄ threshold, but at the latest at ΣΛ̄ threshold
↪→ vary cutoff in range 1-2 GeV (mild effect)

NNLO corrections not yet calculated
↪→ no reliable uncertainty estimates yet

variations in input for pion phase shift not explored yet,
but expected to be small

Colangelo/Gasser/Leutwyler, Nucl.Phys. B603, 125 (2001)

Garcia-Martin/Kaminski/Pelaez/Ruiz de Elvira/Yndurain, Phys.Rev. D83, 074004 (2011)
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First results
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shows electric (helicity non-flip) part of formal
ΣΛ̄→ π+π− p-wave amplitude (real part, sub threshold)
impact of ρ meson visible when comparing
“full” (dispersive) vs. “bare” (χPT input)
inclusion of decuplet exchange (“res”) important
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Transition form factors Σ-Λ
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electric transition form factor very small over large range
↪→ what one might measure at low energies is

magnetic transition form factor
↪→ data integrated over Λ-e− angle, but differential in q2 might be

sufficient
note: Dalitz decay region 4m2

e < q2 < (mΣ −mΛ)2

hardly visible here
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Magnetic transition form factor Σ-Λ
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large uncertainty

↪→ directly related to uncertainty in NLO low-energy constant b10

↪→ can be determined from measuring magnetic transition radius
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Summary

structure of hadrons

learned a lot about hadrons from electromagnetic probes

. . . from strangeness

↪→ high time to combine these lines of research

 electromagnetic (transition) form factors of hyperons

at low energies: decays YA → YB e+e−

not even all decays YA → YB γ are measured
for initial decuplet states

complementary theory program: combining dispersion theory
with baryon octet+decuplet chiral perturbation theory

↪→ first results: electric part of Σ-Λ transition very small;
magnetic part can be predicted if radius is measured
(slope at photon point)
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Outlook — speculation

beyond exploring structure of hadrons  baryonic CP violation

important for baryon asymmetry of universe (if C is violated)
and for strong CP problem

never observed so far (recently 3σ evidence from LHCb)

standard observables: angular distributions
in weak decays of hyperons vs. antihyperons

maybe worth to explore:
angular distribution in YA → γ YB → γ πh
(related to electric dipole moments)

↪→ S. Nair, SL, work in progress

terra incognita . . . . . . hic sunt dracones
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Σ0 → Λ γ

branching ratio is ≈ 100%

basic: differential distribution for
Σ0 → Λ γ → pπ− γ

Σ(∗) Λ

γ

π−

p

why could this be interesting?

↪→ parity symmetry of first decay
demands isotropic distribution in cos θ
(as measured in Λ rest frame)

↪→ advanced:
check for deviation from isotropy as
sign for baryonic P and CP violation

21
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backup slides
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Σ0 → Λ e+e−

basic: branching ratio (QED prediction 5 · 10−3)

advanced: differential distribution;
resolve effect from non-trivial transition form factors GE , GM

d2Γ

dq2 dz
∼
{
|GE (q2)|2 (mΛ+mΣ)2 (1−z2)+|GM(q2)|2 q2 (1+z2)

}
as compared to (leading-order) QED prediction

d2ΓQED

dq2 dz
∼ µ2

ΣΛ q2 (1 + z2)

with transition magnetic moment µΣΛ (known from Σ0 → Λ γ)

note: proportionality factor is function of q := pe+ + pe− ,
but not of z :=cos(angle(e−,Λ) in dilepton rest frame)
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Challenge to extract form factors

Σ0 → Λ e+e− does not produce large
invariant masses for the lepton pair,
q2 < (77 MeV)2

↪→ transition form factor is close to unity
(normalization at photon point)

↪→ need high precision in experiment and
theory to deduce transition form factor

↪→ expect effects on 1-2% level

↪→ effects from form factor compete with
QED corrections

↪→ tedious but calculable
(T. Husek and SL, in preparation)

Σ0

Λ

e+

e−

Σ0

Λ

e+

e−
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Full formulae for differential distribution

double differential decay width Σ0 → Λ e+e−:

d2Γ

ds dz
=

1

(2π)3 64m3
Σ

λ1/2(m2
Σ, s,m

2
Λ)

(
1− 4m2

e

s

)1/2

|M|2

|M|2 =
e4

s2
2((mΣ −mΛ)2 − s){
|GE (s)|2 (mΛ + mΣ)2

(
1−

(
1− 4m2

e

s

)
z2

)
+ |GM(s)|2 (s (1 + z2) + 4m2

e (1− z2))
}
.

note: electron mass neglected in main presentation
independent kinematical variables defined on next slide
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Full formulae for differential distribution, cont.

independent kinematical variables:
s := (pe+ + pe−)2 = q2

z is cos of angle between e− and Λ in rest frame of dilepton

z :=
∆m2

(∆m2)max

with ∆m2 := (pe+ + pΛ)2 − (pe− + pΛ)2 and(
∆m2

)
max

:= λ1/2(m2
Σ, s,m

2
Λ)

√
1− 4m2

e

s
.

kinematical variables cover the ranges
z ∈ [−1, 1] and 4m2

e ≤ s ≤ (mΣ −mΛ)2

Källén function λ(a, b, c) := a2 + b2 + c2 − 2(ab + bc + ac)
26
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Theory for low-energy form factors

Confessions of a theorist:

every theorist has favorite toys

mine are at the moment
effective field theories (EFT) and dispersion theory

↪→ some arguments in favor of this choice:

effective theories are systematic ↔ phenom. models are not
“systematic” means that one can estimate the theory uncertainty/precision

dispersion theory uses data instead of phenomenological models
↪→ (improvable) data uncertainties instead of

(not improvable) model uncertainties

but: not for every problem there exists an effective theory;
dispersion theory not of practical use if one has to deal with
too many channels, too many particles
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Example: effective theory ↔ phenom. model

determine potential energy of object with
mass m and height h above ground

figure from wikipedia

↪→ develop phenomenological model:

Vpheno(h) = m g h (1)

perform measurements for some h (and m) to determine g

↪→ obtain predictive power for any h

?

↪→ if (1) is not completely correct, then how accurate is it?

↪→ phenomenological model cannot answer this,
effective theory can

credits for this example: Emil Ryberg, Gothenburg
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Example: effective theory ↔ phenom. model

determine potential energy of object with mass m and height h
above ground

↪→ effective theory (systematic):

Veff(h) = m (g h + g2 h2 + g3 h3 + . . .) (2)

how to use it:
truncate (2) e.g. after O(h2) and perform measurements to
determine g and g2

theory uncertainty/accuracy ∆V ≈ |g2 h2|
if unsatisfied with accuracy

↪→ truncate (2) only after O(h3) and perform (more!)
measurements to determine g , g2 and g3

. . .

↪→ systematically improvable
(but requires more and more measurements to gain predictive power)
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Example: effective theory and fundamental theory

effective theory

Veff(h) = m (g h + g2 h2 + g3 h3 + . . .)

figure from wikipedia

for this physics problem (potential energy . . . ) Newton provided
the fundamental theory:

Vfund(h) = −G M m

h + R
+

G M m

R

↪→ parameters g , g2 , . . . can be calculated instead of measured

↪→ just Taylor expand in h/R

↪→ range of applicability of effective theory is h� R

effective theories always have a limited range of applicability
30
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Back to hadrons

fundamental theory: QCD

effective field theory at low energies (below resonances):
chiral perturbation theory

there exist plenty of phenomenological models
(and some colleagues call them “effective theories” :-(

for region of hadronic resonances there is
no established effective field theory (yet)
(active field of research: Lutz, Kolomeitsev, SL, Scherer, Meißner, . . . )

↪→ is there a way to get controlled theory uncertainties in the
resonance region?

↪→ dispersion theory! (sometimes)
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Dispersion theory

if a resonance
is important
(e.g. vector mesons for
electromagnetic reactions)

is known from rather well
measured phase shifts

does not have too many
decay channels
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↪→ use phase shifts instead of modeling

↪→ dispersion theory

based on fundamental principles of local quantum field theory
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Right- and left-hand cuts

ImTA→B =
∑
X

TA→X T †X→B

T (q2) = T (0) +
q2

π

∞∫
−∞

ds
ImT (s)

s (s − q2 − iε)

can be used to calculate whole amplitude from imaginary part
↪→ but need to know imaginary part for all values of s,

not only for physical ones restricted by thresholds sthr of A, B , X
for instance, if X = 2π then s ≥ 4m2

π = sthr is physical range

↪→
∞∫

sthr

ds . . .  “right-hand cut”
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Right- and left-hand cuts

T (q2) = T (0) +
q2

π

∞∫
−∞

ds
ImT (s)

s (s − q2 − iε)

crossing symmetry: imaginary part in s ≥ sthr leads in crossed
channel to imaginary part in Mandelstam variable t (or u)

but condition t ≥ sthr is in crossed channel related to s ≤ s̃thr

↪→
s̃thr∫
−∞

ds . . .  “left-hand cut”

note: name “cut” is related to fact that amplitude has
logarithmic structure

↪→ Riemann sheets and cuts
34



Stefan Leupold Hyperon transition form factors at low energies

Hyperon transition form factors

for Σ/Σ∗ → Λ e+e− need transition form factors

Λ

Σ(∗)

↪→ separate long- from short-range physics,
universal from quark-structure specific features

↪→ use dispersion theory and encode short-range physics in
subtraction constants

↪→ obtain

Λ

Σ(∗)

from

Λ

Σ(∗)

π−

π+
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