The ANL-Osaka dynamical coupled-channels (DCC) approach for baryon spectroscopy

Hiroyuki Kamano (KEK)

Collaborators: T.-S. Harry Lee (Argonne Natl. Lab.) Satoshi Nakamura (Cruzeiro do Sul U.) Toru Sato (Osaka U.)

ECT* workshop on "Space-like and time-like electromagnetic baryonic transitions" ECT*, Trento, Italy, May 7-12, 2017

Dynamical coupled-channels model [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

$$
T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_{c} \int_0^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)
$$

\n
$$
\frac{C}{CC} \text{off-shell}
$$

\neffect effect
\n
$$
a, b, c = (\gamma^{(*)} N, \pi N, \eta N, \frac{1}{2} \pi \Delta, \frac{\sigma N}{2}, \frac{\rho N}{2}, \frac{\rho N}{2}, \frac{1}{2} K \Delta, K \Sigma, \cdots)
$$

 Summing up all possible transitions between reaction channels !! (satisfies multichannel two- and *three***-body unitarity)**

e.g.)**πN scattering**

 Momentum integral takes into account off-shell rescattering effects in the intermediate processes.

Dynamical coupled-channels model [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

Dynamical coupled-channels model [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

$$
T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_{c} \int_0^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)
$$

\n
$$
\frac{C}{CC} \text{off-shell}
$$

\neffect effect
\n
$$
a, b, c = (\gamma^{(*)} N, \pi N, \eta N, \frac{1}{2} \pi \Delta, \frac{\sigma N}{2}, \frac{\rho N}{2}, \frac{\rho N}{2}, \frac{1}{2} K \Delta, K \Sigma, \cdots)
$$

 Summing up all possible transitions between reaction channels !! (satisfies multichannel two- and *three***-body unitarity)**

e.g.)**πN scattering**

 Momentum integral takes into account off-shell rescattering effects in the intermediate processes.

Dynamical coupled-channels model [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

Why DCC approach ??

 It defines proper analytic structure (branch points, cuts,…) of scattering amplitudes in the complex energy plane, as required by scattering theory

≽ Crucial for extracting resonances and all postmands 2009 2 (satisfies multichannel two- and *three***-body unitarity)** *WRONG* **resonance signals !! e.g.**)**πN scattering "correctly", and avoiding [e.g., Ceci et al, PRC84(2011)015205]**

Dynamical coupled-channels model [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

Why DCC approach ??

- **It defines proper analytic structure (branch points, cuts,…) of scattering amplitudes in the complex energy plane, as required by scattering theory**
- **EXAMPLE THE MULTICHANNEL TRANSPORT MU e.g.**)**πN scattering "correctly", and avoiding [e.g., Ceci et al, PRC84(2011)015205]**

► Interested in clarifying the physics of reaction dynamics behind formation, substructure, etc. of baryon resonances.

Momentum integral rescaling to a count of the state of the set of t Modeling reaction processes appropriately with a model Hamiltonian & solving proper is crucial !!

Dynamical coupled-channels model [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

$$
T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_{c} \int_{c}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)
$$
\n
$$
G_c \text{off-shell}
$$
\n
$$
a, b, c = (\gamma^{(*)} N, \pi N, \eta N, \frac{1}{N}, \frac
$$

 0.01

 $\overline{0.4}$

 $\overline{0.8}$

 $\overline{1.2}$

 E_{ν} (GeV)

 $\overline{1.6}$

 $\overline{2}$

- γ[']n' → πN (W < 2 GeV)

Analysis of electroproduction reactions: Determining N-N*, N-Δ* e.m. transition form factors

Analysis of electroproduction reactions: Determining N-N*, N-Δ* e.m. transition form factors

Extracted $\mathbf{y}^{(*)}$ p $\rightarrow \mathbf{N}^*$, $\mathbf{\Delta}^*$ transition form factors at finite Q² (evaluated at resonance poles)

γd->npn reaction: Study of ηN scattering parameters

γd > npn reaction: Study of ηN scattering parameters

 $N'_{2}(-l)$

Nakamura, HK, Ishikawa, arXiv:1704.07029 At E^γ = 940 MeV & θ^p = 0 deg. : $N_1(p_1)$ $N_2(p_2)$ $\eta(k)$ t_{NN} t_{MN} $\eta(k')$ $\pi(k')$ $r_{\rm p}$ $N'_1(-l)$ $N'_1(-p_2)$ $N_1'(l)$ $N_2'(l)$ $N_2(l)$ $\gamma(q)$ Ψ_d Ψ_d Ψ_d Ψ_{d} (a) Impulse (b) n exchange (c) π exchange (d) NN rescattering **highly suppressed !! ηn ηn rescattering**

$$
R = \frac{d^3 \sigma_{\text{full}}/dM_{\eta n} d\Omega_p|_{\theta_p=0^\circ}}{d^3 \sigma_{\text{imp}}/dM_{\eta n} d\Omega_p|_{\theta_p=0^\circ}}
$$

With 5% accuracy of R (accessible with forthcoming experiment at ELPH@Tohoku U.), uncertainties in real parts of a_{nn}, r_{nn} can be drastically reduced:

 $Re[a_{nn}]$ = 0.45fm \div 0.5fm \div ... \div 0.1fm $Re[r_{nn}]$ = -2.5fm $+/- 3.5$ fm \rightarrow ... $+/- 0.5$ fm **Range from previous estimations**

γd > npn reaction: Study of ηN scattering parameters

 Reliable neutrino reaction model is necessary for precise **determination of neutrino parameters from future neutrino-oscillation experiments (leptonic CP phase, neutrino mass hierarchy…)**

 Reliable neutrino reaction model is necessary for precise **determination of neutrino parameters from future neutrino-oscillation experiments (leptonic CP phase, neutrino mass hierarchy…)**

Quasi elastic Collaboration@J-PARC Branch of KEK Theory Center scattering [http://j-parc-th.kek.jp/html/English/e-index.html] region Q^2 (GeV/c)² 3 **region Y. Hayato (ICRR, U. of Tokyo), M. Hirai (Nippon Inst. Tech.) Resonance H. Kamano (KEK), S. Kumano (KEK)** $\overline{2}$ **region S. Nakamura (Cruzeiro do Sul U.), K. Saito (Tokyo U. of Sci.) , M. Sakuda (Okayama U.), T. Sato (Osaka U.)**

[Rept. Prog. Phys. 80(2017)056301]

 Reliable neutrino reaction model is necessary for precise **determination of neutrino parameters from future neutrino-oscillation experiments (leptonic CP phase, neutrino mass hierarchy…)**

CP phase & mass hierarchy studies with atmospheric

exp.

T2K (long-baseline exp.)

 $\overline{}$

3 V (GeV)

Can provide *axial* **transition form factors!!**

[Rept. Prog. Phys. 80(2017)056301]

Nakamura, HK, Sato, PRD92(2015)074204

The first-time full coupled-channels calculation of n**-nucleon reactions beyond the Δ(1232) region !!**

Single pion production:

Double pion production:

 $v_\mu p \rightarrow \mu \pi^+ \pi^0 p$ $v_{\mu} p \rightarrow \mu \bar{r} \pi^+ \pi^+ n$ $v_{\mu} n \rightarrow \mu^- \pi^+ \pi^- p$ 0.2 $|_{\text{DCC}}$ $|_{\text{DCC}}$ DCC $ANL \rightarrow\rightarrow\rightarrow$ ANL \mapsto $BNL + \Box$ 0.15 σ (x 10⁻³⁸ cm²) 0.1 0.05 $\mathbf 0$ \degree 0.5 1.5 1.5 $\mathbf{1}$ 1.5 $\overline{2}$ 0.5 0.5 E_v (GeV) E_v (GeV) E_v (GeV)

##NOTE: Q² dependence of all N-N* axial transition form factors are currently fixed with the nucleon dipole form factor.

KΛ production:

 $\overline{2}$ 3

ηN & KΣ productions can also be calculated.

DCC approach to Λ* & Σ* spectroscopy

Recently, our DCC approach has been applied to the analysis of K-p reactions to establish the mass spectrum of Y* (=Λ*, Σ*) baryons with strangeness -1.

> **HK, Nakamura, Lee, Sato, PRC90(2014)065204; PRC92(2015)025205**

- **Taking into account K N, πΣ, πΛ, ηΛ, KΞ, πΣ*(ππΛ), K *N(πK N) channels.**
- **Comprehensive analysis of** *ALL* **available data (more than 17,000 data points) of K- p K N, πΣ, πΛ, ηΛ, KΞ up to W = 2.1 GeV.**

- **Determination of threshold parameters (scattering lengths, effective ranges,…); the partial-wave amplitudes of** $\bar{K}N$ **→** $\bar{K}N$ **, πΣ, πΛ, ηΛ, KΞ for S, P, D, and F waves.**
- **Extraction of Y* resonance parameters (mass, width, couplings, …) defined by poles of scattering amplitudes.**

Selected results of the fits

K ⁻**p** \rightarrow K ⁻**p dσ/dΩ (1464 < W < 2100 MeV)**

Red curve: Model A Blue curve: Model B

Spectrum for Y* resonances found above the KN threshold

HK, Nakamura, Lee, Sato, PRC92(2015)025205

Spectrum for Y* resonances found above the KN threshold

HK, Nakamura, Lee, Sato, PRC92(2015)025205

Spectrum for Y* resonances found above the KN threshold

Spectrum for Y* resonances found above the $\overline{K}N$ **threshold**

Spectrum for Y* resonances found above the KN threshold

Spectrum for Y* resonances found above the KN threshold

K⁻ d \rightarrow (πΣ)₀n reaction: Study of Λ(1405) & other low-lying Y* resonances

HK, Lee, PRC94(2016)015201

$p_K = 1$ GeV, $\theta_n = 0$ deg.

K⁻ d \rightarrow (πΣ)₀n reaction: Study of Λ(1405) & other low-lying Y* resonances

HK, Lee, PRC94(2016)015201

$p_K = 1$ GeV, $\theta_n = 0$ deg.

Prospects for studies of baryon transition form factors

N* & Δ* e.m. transition form factors (Q² > 0)

CLAS database for 1π electroproductions (Q² < 6 GeV² , W < 2 GeV) [ongoing]

+ K⁺Λ, K⁺Σ ⁰ electroproduction data (Q²=0.65-2.55 GeV² , W=1.65-2.25 Gev)

Prospects for studies of baryon transition form factors

+ K⁺Λ, K⁺Σ ⁰ electroproduction data (Q²=0.65-2.55 GeV² , W=1.65-2.25 Gev)

Λ* & Σ* e.m. transition form factors $(Q^2 < 0, Q^2 = 0)$

Prospects for studies of baryon transition form factors

CLAS database for 1π electroproductions (Q² < 6 GeV² , W < 2 GeV) [ongoing]

W (GeV)

+ K⁺Λ, K⁺Σ ⁰ electroproduction data (Q²=0.65-2.55 GeV² , W=1.65-2.25 Gev)

Λ* & Σ* e.m. transition form factors $(Q^2 < 0, Q^2 = 0)$

WEAK current transition form factors (Q² < 0)

Axial transition form factors

|ΔS|=1(us), |ΔC|=1(dc) transition form factors

Thank you for your attention !!

HK, Nakamura, Lee, Sato, PRC94(2016)015201; PRC88(2013)035209

Comparison of N* & Δ* spectrum between multichannel analyses

HK, Nakamura, Lee, Sato, PRC88 (2013) 035209 Spectrum for low-lying states with $Re(M_R) < 1.6$ GeV **is now well established !!** -2 Im(M_R) **M^R : Resonance Re(MR) ("width") (One exception is 2 nd P33, Roper-like state of Δ) pole mass (complex) J ^P(L2I 2J) "N" resonance (I=1/2) J "Δ" resonance (I=3/2) ^P(L2I 2J)** $1/2+(P31)$ $3/2+(P33)$ $5/2+(F35)$ $7/2+(F37)$ $1/2+(P11)$ $3/2+(P13)$ $5/2+(F15)$ $7/2+(F17)$ 2.0 2.0 1.8 1.8 1.6 1.6 1.4 1.4 ſē M(GeV) M(GeV) ₽ E 몸 1.2 1.2 PDG AO BG $1/2-(S31)$ $5/2-(D35)$ $3/2-(D33)$ $3/2 - (D13)$ $1/2-(S11)$ $5/2-(D15)$ 2.0 2.0 1.8 1.8 ۲ 1.6 1.6 1.4 1.4 1.2 PDG AO J BG 1.2

PDG: 4* & 3* states assigned by PDG2012 AO : ANL-Osaka (DCC)

J : Juelich [DCC, EPJA49(2013)44] BG : Bonn-Gatchina [on-shell K-matrix, EPJA48(2012)5]

Extracted scattering lengths and effective ranges

HK, Nakamura, Lee, Sato, PRC90(2014)065204

Scattering length and effective range

aK-p = -0.65 + i0.74 fm (Model A) a_{K-p} = -0.65 + i0.76 fm (Model B)

Extracted e.m. transition form factors

 \checkmark N → "1st P33(J^P=3/2⁺) Δ" transition form factor A_{3/2}

[evaluated at Δ **pole mass: M_R = 1210 –i 50 MeV]**

