The MIGA atom interferometry gravitational antenna for infrasound GW detection

A. Bertoldi — LP2N, IOGS, CNRS (Bordeaux)

for the MIGA consortium

GW detection with Atom Interferometry

- cold neutral atoms in free fall are ideal probes on geodetics (identical, no calibration required, massive)
- AI tool to measure geodetics
- Feasible single baseline measurement
- Can discriminate GGN and GW

Introduction to Atom Interferometry

MIGA – Matter-wave laser Interferometer Gravitation Antenna

AI and GGN rejection

Atom Interferometry

de Broglie wavelength: $\lambda = h/(mv)$

Measurements of inertial effects ($\Delta g/g = 3 \times 10^{-9}$, rotation 1 nras/s stab.), gravity gradient and curvature, fundamental constants (G, h/m), constraints PPN, tests GR, search dark energy...

Nobel 1997: laser cooling & atom trapping – S. Chu, C. Cohen-Tannoudji, W. Phillips

Nobel 2001:

Bose Einstein Condensate (E. Cornell, C. Weimann, W. Ketterle)

Nobel 2005: Nobel 2012: coherence, laser based spectroscopy & comb measuring & manipulate individual quantum systems de Broglie wavelength: $\lambda = h/(mv) \sim 1\mu m$

 $T \sim 1 \,\mu K \rightarrow v \sim 1 \,cm/s$

diffraction gratings with e.m. waves

Peters *et al.*, Nature **400**, 849 (1999) $\Delta g/g = 3 \times 10^{-9}$

Measuring gravity @ LSBB

Farah et al., Gyr. and Navig. 5, 266 (2014)

Kasevich et al., US20050027489 Patent

 $\partial_z g \sim 10^{-9} \,\mathrm{g \ m^{-1} \ Hz}^{-1/2}$

80

Rosi et al, PRL 114, 013001 (2015)

from Physics 10, 47 (2017)

Asenbaum et al, PRL 118, 183602 (2017)

Very Large Baseline Al

Proposals of ground and space projects with even longer baselines, to test GR, matter neutrality, dark matter/energy... Hannover – Germany

 inertiale Messungen
 Vibrationsisolierung entkoppelt Restbodenrauschen In GR accelerated mass \rightarrow GW

- speed of light propagation
- 2 polarizations

GW changes separations between geodetics

 $h = \delta L / L$

L (1+h sin(ωt))

First detection: PRL 116, 061102 (2016)

GW detectors sensitivities

GWplotter from Moore, Cole and Berry

AI and GW detection

 PHYSICAL REVIEW D 78, 122002 (2008)

 Atomic gravitational wave interferometric sensor

 Savas Dimopoulos,^{1,*} Peter W. Graham,^{2,†} Jason M. Hogan,^{1,‡} Mark A. Kasevich,^{1,§} and Surjeet Rajendran^{1,2,∥}

 ¹Department of Physics, Stanford University, Stanford, California 94305, USA

 ²SLAC, Stanford University, Menlo Park, California 94025, USA

 ²SLAC, Stanford University, Menlo Park, California 94025, USA

 (Received 28 August 2008; published 19 December 2008)

 PRL 110, 171102 (2013)
 PHYSICAL REVIEW LETTERS
 week ending 26 APRIL 2013

 New Method for Gravitational Wave Detection with Atomic Sensors

 Peter W. Graham,¹ Jason M. Hogan,² Mark A. Kasevich,² and Surjeet Rajendran¹

 ¹Department of Physics, Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA

 Peter W. Graham,¹ Jason M. Hogan,² Mark A. Kasevich,² and Surjeet Rajendran¹

 ¹Department of Physics, Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA

 ²Department of Physics, Stanford Inviversity, Stanford, California 94305, USA

 ²Department of Physics, Stanford Inviversity, Stanford, California 94305, USA

 ²Department of Physics, Stanford Inviversity, Stanford, California 94305, USA</t

PHYSICAL REVIEW D 88, 122003 (2013)

Low-frequency terrestrial gravitational-wave detectors

Jan Harms,¹ Bram J. J. Slagmolen,² Rana X. Adhikari,³ M. Coleman Miller,^{4,5} Matthew Evans,⁶ Yanbei Chen,⁷ Holger Müller,⁸ and Masaki Ando^{9,10}

AI and GW detection

- Free falling atoms insensitive to vibrations (decoupled)
- Optical ruler subject to seismic noise
- Noise mitigation via differential measurement (GG)
- Atoms do not feel radiation pressure
- Use optical transitions to avoid laser technical noise
- GGN reduction

GW signal in the differential atomic phase

Noise Laser L common mode; noise Laser R given by travel time delay

→ ultra-stable laser, Michelson-Morley multi-arm configuration

Graham et al, PRL 110, 171102 (2013)

(Single photon) optical transitions used for atomic clocks

 \rightarrow laser noise Common Mode, and requirement mitigation

Graham et al, PRL 110, 171102 (2013)

Gravity Gradient Noise is a fundamental limit for ground based GW detectors with two test masses PHYSICAL REVIEW D

VOLUME 30, NUMBER 4

15 AUGUST 1984

Terrestrial gravitational noise on a gravitational wave antenna

Peter R. Saulson Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 27 December 1983)

A random gravitational force can be generated by seismic noise, by atmospheric acoustic noise, and by moving massive bodies. An estimate of the gravitational power spectrum at a point on the Earth is given. Such a force is an important source of noise in an interferometric gravitational wave antenna below f = 10 Hz.

PHYSICAL REVIEW D 93, 021101(R) (2016)

Low frequency gravitational wave detection with ground-based atom interferometer arrays

W. Chaibi,^{1,*} R. Geiger,^{2,†} B. Canuel,³ A. Bertoldi,³ A. Landragin,² and P. Bouyer³

 ¹ARTEMIS, Université Côte d'Azur, CNRS and Observatoire de la Côte d'Azur, F-06304 Nice, France
 ²LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, 75014 Paris, France
 ³LP2N, Laboratoire Photonique, Numérique et Nanosciences Université Bordeaux-IOGS-CNRS: UMR 5298, rue Mitterrand, F-33400 Talence, France (Received 23 June 2015; published 15 January 2016)

$\phi_{at}^{i} - \phi_{at}^{j} = kh (x_{i} - x_{j}) + 2kT^{2} [a(x_{i}) - a(x_{j})]$

Gravity gradient

GGN reduction with AI array

80 gradiometers, L=16 km PRD 93, 021101(R) – 2016

Spatial averaging to reduce GGN and allow for GW extraction

10× gain in the 100 mHz – 10 Hz band

Detector geometry optimized in relation to GGN spatial correlation properties

MIGA – Matter wave laser Interferometer Gravitation Antenna

MIGA project

French "Equipement d'Excellence" Initiative 17 partners

Gravitational wave physics

Demonstrator for sub-Hz ground based GW detectors

<u>Geoscience</u>

Gravity sensitivity of 10^{-10} g/ \sqrt{Hz} @ 2Hz Gradient sensitivity of 10^{-13} s⁻²/ \sqrt{Hz} @ 2Hz

Laboratoire(s)/	Numéro(s) d'unité/	Tutelle(s)/Research		
Laboratory	Unit number	organization reference		
Laboratoire Photonique, Numérique et Nanosciences –	UMR 5298	Institut d'Optique CNRS		
LP2N		Université Bordeaux 1		
Laboratoire Souterrain Bas Bruit - LSBB	UMS xxxx, starting on January 1st, 2012	Université de Nice Sophia Antipolis Université d'Avignon et des Pays de Vaucluse CNRS		
Systèmes de Référence Temps - Espace - SYRTE	UMR 8630	Observatoire de Paris CNRS UPMC LNE		
Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux - ARTEMIS	UMR 6162	Observatoire de la Côte d'Azur CNRS Université de Nice Sophia Antipolis		
Centre Lasers Intenses et Applications - CELIA	UMR 5107	Université Bordeaux 1 CNRS CEA		
Laboratoire Kastler-Brossel – LKB	UMR 8552	ENS UPMC Collège de France CNRS		
Astroparticule et Cosmologie – APC	UMR 7164	Université Paris Diderot CNRS Observatoire de Paris CEA		
GEOAZUR	UMR 6526	Université de Nice Sophia Antipolis CNRS Observatoire de la Côte d'Azur		
Géologie des Systèmes et des Réservoirs Carbonatés - GSRC	EA 4234	Université de Provence		
Environnement Méditerranéen et Modélisation des Agro- Hydrosystèmes - EMMAH	UMR 1114	Université d'Avignon et des Pays de Vaucluse INRA		
Institut Pluridisciplinaire de Recherche Appliquée dans le domaine du génie pétrolier - IPRA	FR 2952	Université de Pau et des Pays de l'Adour CNRS		
IDES	UMR 8148	Université Paris XI CNRS		
Laboratoire d'Electronique Antennes et Télécommunication - LEAT	UMR 6071	Université de Nice Sophia Antipolis CNRS		
Geosciences Montpellier	UMR 5243	Université Montpellier 2 CNRS		
Institut de Physique du Glode de Strasbourg - IPGS	UMR 7516	Université Louis Pasteur CNRS		
Entreprise(s) / company	Secteur(s) d'activité/activity field	Effectif/ Staff size		
ALPHANOV	Laser development – industrial platform	20		
MUQUANS	Laser development – Atom interferometry	4		
SOLETANCHE BACHY TUNNELS	Digging and construction of tunnels of large section by all type of processes	50-80		

<u>LP2N (Bordeaux)</u> cavity design, vacuum system, project management

<u>SYRTE (Paris)</u> cold atom source, detection system

ARTEMIS (Nice) cavity mirror suspensions

<u>µQuans (Bordeaux)</u> laser systems

LSBB (Rustrel) tunnels & site management, geophysics expertise

• validation of cavity enhanced AI with free-falling atomic sensors (2016-17)

 prototype 10m horizontal gradiometer @LP2N (2018-19)

• 300m VLBAI array at LSBB (2019—)

- ⁸⁷Rb atoms cooled and trapped in 2D / 3D MOT
- 10⁸ atoms launched vertically at 4 m/s
- Raman transitions to prepare of pure magnetic state and velocity selection
- Detection of transition probability by fluorescence over 10⁶ atoms

Atomic gravimeter

- ✓ Cold ⁸⁷Rb atom cloud (2D MOT, 3D MOT) prepared and launched vertically
- ✓ Interrogation cavities characterized
- ✓ Vacuum setup, magnetic shield, and control system tested

10m gravity-gradiometer

✓ Two atom sensors and laser systems realised

✓ Vacuum system designed

Laboratoire Souterrain à Bas Bruit (LSBB)

Two dedicated tunnels of 300 m

•Continuous operation without perturbation

- •Need for horizontal interrogation
- •Orthogonal configuration to remove laser noise

Definition of requirements (volume, access, instrumentation, services, environment - temperature, humidity)

Atom Interferometer niche

Central cavity

Sketch: 7m x 7m and height: 5m (without the dome)

Extreme cavity

Cavity injection 2

AI 1

$\phi_{at}^{i} - \phi_{at}^{j} = kh (x_i - x_j) + 2kT^2 [a(x_i) - a(x_j)]$ $GW \qquad \text{Gravity gradient}$

- Low frequency GW measurement
- Measurement of the local gravity field \rightarrow Geoscience

- Substitute Raman/Bragg transitions with single photon ones
- Trapped Atom Interferometry to increase interrogation time
- Measurement-and-correction interrogation schemes, interleaved schemes to increase sensitivity
- Engineer quantum noise to boost sensitivity (spin squeezing)

		MIGA	done		required
Momentum Separation:		2hk	10²(1	.0³?) hk	1000hk
Geometric separation:		3.5 mm	54 cm	• ~1 m	
Detection sensitivity:	QPN	QPN-200	B	QPN-2	20dB
# atoms:		106	107		10 ⁸
Separation:	300 m	10 m		10 km	

Atom Interferometry

Al as a new approach to GW detection, key features

MIGA for GW detection and geophysics, status of the experiment

P. Bouyer
A. Bertoldi
B. Canuel
M. Prevedelli Inv. Prof.
G. Lefèvre PhD stud.
M. Essayeh M2 stud.

<u>Past members:</u>				
I. Riou	PhD stud			
S. Pellisson	postdoc			
J. Gillot	postdoc			

FIG. 2. Spatial behavior of the normalized NN correlations between two distant points separated by the relative distance $x = |X_j - X_i| / \mathcal{L}_{\rho}(\omega)$, where $\mathcal{L}_{\rho}(\omega)$ is the NN correlation length. The anticorrelation is a consequence of mass conservation between adjacent cells of fluctuating density.

FIG. 3. Strain sensitivity curve for an AI array with N = 80, $\delta = 200 \text{ m}$, $\delta_0 = \delta_N = 500 \text{ m}$, L = 16.3 km and $L_a = 32.6 \text{ km}$. The AI phase noise is $-140 \text{ dB} \text{ rad}^2/\text{Hz}$ with the interrogation time T = 0.3 s, and n = 1000 LMT beam splitters. Green: Detection noise. Dotted-dashed black (dashed blue): INN (SNN) for two test masses separated by the baseline L. Solid black line (blue): Residual INN (SNN) after NN rejection with the AI array. Red: Overall sensitivity curve.

INN: Infrasound NN SNN: Seismic NN

