

Gravitational Wave Transients

Marie Anne Bizouard – LAL Orsay – IN2P3 / Univ. Paris Sud

Outline

- GW transient sources
- What has been detected / what is known / what is unknown
- Multi-messenger astronomy
- Online searches
- Observation planning / detectors network

The gravitational wave spectrum

LIGO-Virgo GW searches zoology

Network of ground-based advanced detectors

Operational Commissioning/construction Planned

LIGO

Since 2007, LIGO, GEO & Virgo data are jointly analyzed by the LIGO Scientific Collaboration and the Virgo Collaboration.

Multi-detectors search

- Earth rotation allows to cover almost the full sky
- Effective experience livetime can be increased by time shifting one detector wrt others → improve the background estimation/significance of an event.

LIGO-GEO-Virgo joint runs

Multi-messenger astronomy with GWs

What the GW network is doing now

All-sky / all-time transient searches

- \rightarrow low latency (1 min)
- \rightarrow submit **private** GCN notices & circulars the "most significant" triggers
- → 74 MOU currently active
- \rightarrow all triggers kept in a private LVC data base
- \rightarrow LIGO data public release 18 months after data taking

Targeted searches (external triggers)

- \rightarrow GRB, SGR, AXP, magnetars
- \rightarrow medium latency (GRB only)

Multi-messenger searches

- \rightarrow neutrinos (HEN & LEN), FRB, GRB, ...
- → sub-threshold triggers

Latest — as of 20 9 une 2017 16:22 CD1								
Query:								
Get neighbors:								
UID	Labels	Group	Pipeline	Search	Instruments			
G250089		CBC	gstlal	HighMass	H1,L1			
G250088		CBC	gstlal	HighMass	H1,L1			
G250087		CBC	gstlal	HighMass	H1,L1			
G250086		CBC	gstlal	HighMass	H1,L1			
G250085		CBC	gstlal	HighMass	H1,L1			
G250078		CBC	MBTAOnline		H1,V1			
G250077		CBC	MBTAOnline		H1,V1			
G250076		CBC	gstlal	HighMass	H1,L1			
G250075		CBC	MBTAOnline		H1,V1			

GW transient sources

- To emit GW a source must be compact, relativistic and asymmetric
- Astrophysical sources
 - Stellar core collapse
 - Black holes
 - Neutron star instabilities
- Exotic objects: cosmic (super-)string, ...
- Which information matters?
 - Astrophysical events rate
 - Signal waveform
 - Background / signal disentanglement
 - Other messenger association?

associated with other messengers: (photons/neutrinos) GRB, SGR, pulsar glitches, supernova,

Compact Binary Coalescence

• Neutron star – neutron star (Centrella et al.)

Unique way to study string field gravityy and the structure of the nuclear matter in the most extreme conditions

Waveform carries lots of information about binary masses, orbit, merger, spins, ...

Detected BBH events

Extracting the parameters

Event	GW150914	GW151226	LVT151012	
Signal-to-noise ratio ρ	23.7	13.0	9.7	
False alarm rate FAR/yr ⁻¹	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37)-22]
p-value	7.5×10^{-8}	$7.5 imes 10^{-8}$	0.045	1 [1(
Significance	$> 5.3 \sigma$	$> 5.3 \sigma$	1.7σ	trair
Primary mass $m_1^{\text{source}}/M_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}	Ś
Secondary mass $m_2^{\rm source}/{ m M}_{\odot}$	$29.1_{-4.4}^{+3.7}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}	
Chirp mass $\mathscr{M}^{\rm source}/{ m M}_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$	
Total mass $M^{ m source}/ m M_{\odot}$	$65.3_{-3.4}^{+4.1}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}	
Effective inspiral spin Xeff	$-0.06\substack{+0.14\\-0.14}$	$0.21\substack{+0.20 \\ -0.10}$	$0.0\substack{+0.3 \\ -0.2}$	ŗ
Final mass $M_{ m f}^{ m source}/{ m M}_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}	
Final spin <i>a</i> _f	$0.68\substack{+0.05 \\ -0.06}$	$0.74^{+0.06}_{-0.06}$	$0.66\substack{+0.09\\-0.10}$	L
Radiated energy $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0\substack{+0.1 \\ -0.2}$	$1.5^{+0.3}_{-0.4}$	
Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4}\times \\ 10^{56}$	$\begin{array}{c} 3.3^{+0.8}_{-1.6} \times \\ 10^{56} \end{array}$	$3.1^{+0.8}_{-1.8}\times\\10^{56}$	
Luminosity distance $D_{\rm L}/{ m Mpc}$	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}	
Source redshift z	$0.09\substack{+0.03 \\ -0.04}$	$0.09\substack{+0.03\\-0.04}$	$0.20\substack{+0.09 \\ -0.09}$	
Sky localization $\Delta\Omega/deg^2$	230	850	1600	

Radiated energy & luminosity

• GW150914: $E_{GW} \approx 3 Mc^2$, or ~4.5% of the total mass-energy of the system.

- Roughly 10⁸⁰ gravitons.
- Peak luminosity $L_{GW} \sim 3.6 \times 10^{54} \ erg/s$, briefly outshining the EM energy output of all the stars in the observable universe (by a factor > 20).

Astrophysical rate density

Updated rate:

12-213 Gpc⁻³ yr⁻¹ (9-240 Gpc⁻³ yr⁻¹)

Roughly consistent with astrophysical expectations from: $\$

- Core collapse supernova rate
- Short GRB rate
- Astrophysical modeling of compact binary formation ("population synthesis")
- A half-dozen BNS systems in our galaxy (including Hulse-Taylor)

Binary involving a NS

Figure 1 from I Bartos et al 2013 Class. Quantum Grav. 30 123001

NS-NS – matter effect

Binary neutron stars & neutron star-black hole

Binary neutron stars & neutron star-black hole

Stellar core collapse

- Stars spend most of their lives burning hydrogen.
- Helium settles in the core and will burn when temperatures increase sufficiently
- For massive stars $(M > 8 10M_{\odot})$ the process continues through Carbon, Oxygen, ... up to Iron.
- This process does not continue past iron as iron is one of the most tightly bound nuclei.
- Iron core builds up in center of star.

Stellar core collapse in a nutshell

CCSN: post-bounce waveform summary

[Kotake C.R. Physique 14 (2013) 318-351]

Core collapse supernova: how far can we go & how many?

After 2020:

Distance: between 100 kpc (SASI and MHD) and 20 Mpc (extreme model like disk fragmentation and bar mode) [Gossan et al arxiv:1511.02836]

Rate : [J. Gill et al in preparation]

Neutron star instabilities

- Supernova remnants or accreting white dwarf collapse → very rapidly rotating NS will develop non axisymetric dynamical instabilities
- The physics of NS is far from being simple. Many parameters play a role on the NS stability: equation of state for high density matter, matter superfluidity / superconducting, presence of proton, strange quarks, ...)
- **Pulsation normal modes:** f and r modes are the most promising modes for GW emission ?
 - f-mode: fundamental (acoustic) pressure mode of the star (2-4 kHz). Rotation change frequencies. GW emission damps f-modes within ~ a tenth of a second.
 - r-modes: inertial modes due to rotation (Coriolis force). Lots of work around because have been thought to lead to high amplitude GW emission (GW radiation was thought to increase the amplitude of the mode)
 - bar mode instabilities occur when rotational kinetic ratio exceeds β =0.27
 - w-modes: pure GR effects (7 kHz) damped in a fraction of millisecond.
- GW Amplitude ? Last predictions are quite pessimistic.
- Rate? Very unclear. The fraction of very rapidly NS after a SN is not known (10⁻⁶ /yr/galaxy ?)

Black hole ringdown

- A BH that is distorted from its stationary Kerr configuration will radiate GW that drive it back to the stationary state (hair loss theorem)
- A BH formed in core collapse will certainly be distorted: if large amounts of matter accrete onto it, it will continually driven into new states of distortion.
- Waveform (perturbation theory): Quasi-normal mode $e^{-t/\tau}\sin(2\pi ft)$
- BH spectroscopy: deduce the BH parameters (mass M, spin a) from QNM parameters (f, τ).

$$2\pi f = \frac{1}{M} \left[1 - 0.63 \left(1 - \frac{a}{M} \right)^{0.3} \right] \qquad \tau = \frac{4}{2\pi f \left(1 - \frac{a}{M} \right)^{0.45}}$$

GW amplitude: $h \approx 5.10^{-22} \left(\frac{E}{10^{-3} M \otimes c^2} \right)^{1/2} \left(\frac{1kHz}{f} \right)^{1/2} \left(\frac{15Mpc}{r} \right)$

Multi-messenger searches – what for?

- 2 modes: EM events "triggered" GW searches & GW transient EM follow-ups
- Triggered searches: one knows time, position (sometimes distance) and some info about the putative GW signal to search → tune an "all-sky/all-time" generic unmodelled burst search. What do we gain?
 - Background reduction (parameter space reduction) → tackle weaker GW signals.
 - Combined information may infer astrophysical information about the source
 - Non detection GW results may rule out models
- EM follow-ups: prompt (<1mn) GW searches to identify possible GW candidates and reconstruct their sky position to send alerts for EM transient follow-ups that would be missed

Transient GW events & "electro-magnetic" transients

Transient GW events & "electro-magnetic" transients

Magnetar flares: Soft Gamma Ray Repeaters (SGRs) & anomalous X-ray pulsars (AXPs) are believed to be magnetars (NS with B>10¹⁵ G):

- Occasionally emit flares of soft gamma-rays E_{EM} =10⁴² erg.
- Some SGRs produce giant flare with energy up to 10⁴⁶ erg (burst <0.2 s)
- Giant flare could be related to cracking of the crust (star quake). Possible excitation of vibrational modes (quasi-periodic oscillations seen in X-ray detectors)

 \rightarrow may excite non-radial oscillation modes that couple to GW emission.

Pulsar glitches: frequency glitch observed in some young pulsars.

The mechanism is not clear but some scenario has been proposed:

- crust craking (star quake)
- superfluid-crust interaction

 \rightarrow normal mode of the NS excitation that couples with GW emission.

→ GW search assuming damped normal mode waveforms

EM follow up

Source sky localisation

Source sky localisation

- 2 detectors → circle in sky
- Timing triangulation provides leading order estimates: error dominated by timing uncertainty: $\sigma_t \sim \frac{1}{2\pi\rho\sigma_f}$
 - \rightarrow tens of square degrees
 - \rightarrow better resolution at high frequency
- Coherent analysis inverse problem by-product

Sky localization – 2 detectors case

Sky localization: more detectors needed!

3-D projection of the Milky Way onto a transparent globe shows the probable locations of confirmed detections GW150914 (green), and GW151226 (blue), and the candidate LVT151012 (red). The outer contour for each represents the 90 percent confidence region while the innermost contour is the 10 percent region. Image credit: LIGO/Axel Mellinger

Near term observing plan

LIGO – Virgo - KAGRA

Network performance

Network performance

Epoch			2015-2016	2016 - 2017	2018 - 2019	2020+	2024+
Planned run duration			4 months	9 months	12 months	(per year)	(per year)
Expected burst range/Mpc		LIGO	40-60	60 - 75	75-90	105	105
		Virgo		20 - 40	40 - 50	40 - 70	80
		KAGRA		—	—	—	100
Expected BNS range/Mpc		LIGO	40-80	80 - 120	120 - 170	190	190
		Virgo		20 - 65	65-85	65-115	125
		KAGRA		—	—	—	140
Achieved BNS range/Mpc		LIGO	68-78	—	—	—	—
		Virgo		_		_	
		KAGRA	—	_	_	_	_
Estimated BNS detections		0.002 - 2	0.007 - 30	0.04 - 120	0.1 - 200	0.4 - 400	
Actual BNS detections		0	—	—		—	
90% CR	% within	5 deg ²	< 1	2	> 1 - 2	> 3 - 8	> 20
		20 deg ²	< 1	14	> 10	> 8 - 30	> 50
	median/deg ²		480	230			
Searched area	% within	5 deg ²	6	20		—	_
		20 deg^2	16	44			
	median/deg ²		88	29			

Network performance

... and LISA

