

Long term follow-up and revisits

Emeric Le Floc'h – CEA-Saclay & AIM

Follow-up of transient events : which time-scale ?

Early time:

(See Alain's talk)

- counterpart identification (if unknown location)
- "early" characterization of physical properties (if sensitive enough)

Follow-up of transient events : which time-scale ?

Early time:

(See Alain's talk)

- counterpart identification (if unknown location)
- "early" characterization of physical properties (if sensitive enough)

Long term:

in-depth analysis of the transient source
characterization of its physical environment

<u>Revisits:</u>

- Hosting environment
- Transient source variations (if variability over long time scales, e.g., AGNs, repeaters, ...)

Follow-up of transient events : which time-scale ?

Early time:

(See Alain's talk)

- counterpart identification (if unknown location) •
- "early" characterization of physical properties (if sensitive enough)

This talk

Long term:

- in-depth analysis of the transient source characterization of its physical environment

Revisits:

- Hosting environment
- Transient source variations (if variability over long time scales, e.g., AGNs, repeaters, ...)

The typical time-scales for long term follow-up are source- and wavelength-dependent :

hours to weeks : e.g.,

optical light-curve characterizations (galactic transients, SN/GRB, ...)

"Flaring-type" variabilities (accreting BHs, ...)

The typical time-scales for long term follow-up are source- and wavelength-dependent :

- months to years: e.g.,
 - radio GRB afterglows
 - High-z SNe optical light curves
 - AGN variability

Long term follow-up and revisits : Which telescopes & which programs ?

Unlike the early time follow-up, which is more efficient with dedicated, fast-slewing (but small) automated telescopes, long term observations and revisits can be performed with any facility (private or opened to the community, small or large) :

- Target of Opportunity (ToO) observations for time-scales ranging from minutes to weeks
- Regular calls (or sometimes ToO !!) for much longer term follow-up + revisits

Long term follow-up and revisits : Which telescopes & which programs ?

→ Goes from small apertures (e.g., LCOGT 1m, Swift, …) …

... to the largest facilities with rapid response modes (HST, 8m-class telescopes, ALMA, ...)

Long term follow-up and revisits : photometric issues

When the transient source fades to similar flux levels of its hosting environment, extra care has to be considered (not the case in the "early time" follow-up)

In this case, long-term radio emission from GRB afterglows had been misinterpreted as continuum from SF activity in the host...

GRBs (Long + Short) :

 Characterization of the afterglow

- Central engine
- Geometry of the jet
- Circum-burst properties...
- Reverse shocks

GRB081028, Margutti+10

GRBs (Long + Short) :

Connection to SN lbc

Hjorth+03

GRBs (Long + Short) :

 Spectroscopy in absorption: cosmological probes (host redshift, ISM, IGM, intervening systems, connection with e.g., quasar-DLAs)

GRBs (Long + Short) :

 Spectroscopy in absorption: probing the re-ionization era (e.g., THESEUS proposed for M5-ESA)

GRBs (Long + Short) :

- Host properties : luminosities, stellar mas, SFR, morphology, ..., comparison with the field
- Location of GRBs in their host
- Redshift
- Emission properties compared to absorption

970228	970508	970828	971214	980326	980329
+	+		•		
980519	980613	980703	981226	990123	990506
	•			1	
990510	990705	990712	991208	991216	000131
Ŧ	1:5+			+	
000301c	000418	000926	010222	010921	011030
+	1	Service 1	t +		
011121	011211	020127	020305	020322	020331
			+	N	•+*
020405	020410	020427	020613	020903	021004
1		1	÷	+	+
021211	030115	030323	030329	040924	041005
+				+	

Fruchter+06

FRBs :

- Extremely brief bursts of radio emission
- Detected with single dish facilities (Arecibo, Parkes, Nancay, ...)
 - → no accurate localization (for one-time events)
- No counterpart known at other wavelengths so far (but ToO's on-going)

Ex. of cosmological use: magnetic field and turbulence of the cosmic web (Ravi+16)

FRBs :

- 1 known repeater, localized with VLA, VLBI
- In a dwarf galaxy at z~0.2
- FRB coincident with a starforming region (Halpha Subaru IFU + HST)
- Coincident with a compact & varying radio source

Bassa+17, Chatterjee+17

FRBs :

 → Coordinated monitoring of FRB121102 planed for September 2017 (4 nights) with INTEGRAL (hard X-rays), optical (OHP), Nancay (radio) (+ possibly FAST, IRAM-30m, Arecibo, …) : C.Gouiffes et al.

Superluminous SN:

- Spectro-photometric characterization
- Physics of the central engine (pair-instability or magnetar driven ?, ...)
- Distance, rate
- Hosting environment

Type 1a SN:

• Hubble diagram, cosmology

• Physical modelling of thermonuclear SN (e.g., Cobalt-56 detected with INTEGRAL)

TDEs :

 Physics of accretion around massive BHs

Miller+15

AGNs :

- Accretion disks around SMBHs
- Properties of the surrounding environment (torus, NLR, BLR, ...)
- Radio jets
- Accurate sampling of the AGN spectral energy distributions

xid 17 18 18.5 മല്ഡ 19 19.56000 4000 8000 wavelength [Å] -10.445 var -0.5∆mag 0 0.5 2002 2004 2006 UTC

Salvato+09

Accreting BH, X-ray binaries

- Outbursts, flares
- Compact jets ignition
- Accretion-ejection connection
- Composition of relativistic jets

Accreting BH, X-ray binaries

 E.g., Multi-Ibda campaign toward V404 Cygni (2015 outburst)

Positron annihilation at 511keV, with x1000 variations over ~1h time-scales !!

Accreting BH, X-ray binaries

GWs, Neutrinos : Early-time follow-up not successful yet ...

TAToO (Telescope Antares ToO) on-going : TAROT, ROTSE, Swift, ...
 <u>GW ToO programs on 8m-class telescope</u>s already approved !!!!!

Forming BHs in the dark:

- Search for possible signatures of the recently formed accreting BH
 - → Requires X-ray & radio ToOs

⁽e.g., Mirabel+)

Long term follow-up and revisits : conclusions

- A large variety of science themes to be covered with the transient sky at ~H2020
- French community highly active in some of them (both galactic and extragal.), but less represented in some key others
- Still some time before next generation of TS survey facilities, but need to react quickly