#### Discovery Potentials of Light Higgs at LHC Based on arXiv:1704.07850 with Disha Bhatia and Saurabh Niyogi

#### Ushoshi Maitra

TIFR, Mumbai

May 18, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

## Outline

1 Observations at LHC

**2** Future Prospect





#### What did we observe?

・ ( ) ・ 一 ・ ・ ・ ・ ・





# Higgs boson decay

• In the Standard model, Higgs couples to the gauge bosons via the Kinetic term i.e

$$D_{\mu}\Phi^{\dagger}D^{\mu}\Phi = \frac{M_V^2}{v}V^{\mu}V_{\mu}h$$

where

$$D^{\mu}\Phi = \partial_{\mu} + igTW_{\mu} + ig'B_{\mu} \begin{bmatrix} 0\\v+h \end{bmatrix}$$

• Higgs couples to the fermions via the Yukawa term

$$L_{yuk} = y_{ij}\bar{\Psi}^i\Phi\Psi^j = \frac{\sqrt{2}m_f}{v}\bar{\Psi}\Psi h$$

• Higgs couples to all particles via its mass

#### Production at LHC



<ロト < 回 > < 回 > < 回 > < 回 > 1

# Observing Higgs@LHC

- $ggF \rightarrow \gamma\gamma$ 
  - low branching ratio but clean environment
  - Possible to reconstruct the Higgs i.e photons 4-vectors are added to reconstruct the invariant mass of the intermediate particle.
- $ggF \rightarrow ZZ^*$ 
  - Four lepton final states- clean environment and reconstruction
- $ggF \rightarrow WW^*$ 
  - due to the presence of neutrino, Higgs can not be reconstructed
  - probe electroweak symmetry breaking.
- VH  $\rightarrow b\bar{b}$ 
  - clean signature compared to gluon fusion
  - leptons in the final state kills large multijet background
  - probing quark(down-type) coupling
- VBF/VH  $\rightarrow \gamma\gamma, \tau \tau, WW^*, ZZ$  and  $t\bar{t}h \rightarrow \gamma\gamma, b\bar{b}$  can probe electroweak symmetry breaking and Yukawa structure

## Quantifying our observation



 Signal strength (μ) defined as the ratio of the observed scalar rate to the SM expectation value i.e

$$\mu = \frac{\sigma(pp \to S \to ab)}{\sigma(pp \to h_{sm} \to ab)}$$

- The SM prediction lies close to the measured value of the signal strength for almost all channels -will improve with more events
- What does it mean?
  - No new physics- The scalar is our 'celebrated' Higgs and μ will become 1 with more precision.
  - It may belong to an enlarged scalar sector of a BSM scenario

#### Where are the other scalars

- The BSM scenario will predict additional scalars along with the observed one.
- Till date, none of the searches at LHC has indicated any conclusive excess for additional scalars.
- In most of the analysis the scalars are assumed heavy and they are searched in WW, ZZ and hh decay mode.
- There might be a possibility that the scalars are light and till now, they are buried beneath huge SM backgrounds at the collider.
- The second phase of LHC is running with higher center of mass energy and with high luminosity- Is it possible to probe such scalars?

#### Simplest extension - 2HDM

- The model has an additional  $SU(2)_L$  doublet  $\Phi_1$  along with SM fields.
- The Lagrangian is given by

 $\mathcal{L}_{2\text{HDM}} = (D_{\mu}\Phi_{1})^{\dagger} D^{\mu}\Phi_{1} + (D_{\mu}\Phi_{2})^{\dagger} D^{\mu}\Phi_{2} + \mathcal{L}_{\text{Yuk}}(\Phi_{1}, \Phi_{2}) - V(\Phi_{1}, \Phi_{2})$ 

•  $V(\Phi_1, \Phi_2)$  is the scalar potential,

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} - m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} - \frac{1}{2} \lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.$$

## Types of 2HDM

• Most general Yukawa interaction is given by

 $\mathcal{L}_{\text{Yuk}} = \Sigma_{n=1,2} \overline{Q_L^i} \, \mathcal{Y}_{1\,ij}^d \Phi_n d_R^j + \overline{Q_L^i} \mathcal{Y}_{1\,ij}^u \Phi_n^c u_R^j + \overline{Q_L^i} \mathcal{Y}_{1\,ij}^e \Phi_n^c e_R^j + h.c.$ 

- To suppress tree level FCNCs, the fermions should couple only to one doublet - A Z<sub>2</sub> symmetry is added
- Depending on which of the doublets couple to fermions, one can categorize 2HDM into four types:
  - Type 1 :  $\Phi_2$  couples to fermions
  - Type 2:  $\Phi_2$  couples to up-type quarks,  $\Phi_1$  couples to down-type quarks and leptons
  - Lepton Specific (X) :  $\Phi_2$  couples to quarks and  $\Phi_1$  couples to leptons
  - Flipped (Y): Φ<sub>2</sub> couples to up-type quarks and leptons, Φ<sub>1</sub> couples to down-type quarks

#### Additional scalars

(日) (日) (日) (日) (日) (日) (日)

- Out of eight fields in  $\Phi_n = \begin{pmatrix} \phi_n^+ \\ \frac{1}{\sqrt{2}} \left[ \rho_n + i\eta_n + v_n \right] \end{pmatrix}$ , three generates mass for W, Z bosons and five physical scalars remains—h, H, A,  $H^{\pm}$ .
- The doublets can be expressed in terms of physical scalars and goldston bosons as

$$\Phi_1 = \begin{pmatrix} G^+ \cos\beta + H^+ \sin\beta \\ \frac{1}{\sqrt{2}} \left[ h \sin\alpha - H \cos\alpha + i \left( G \cos\beta + A \sin\beta \right) + v_1 \right] \end{pmatrix}$$
  
$$\Phi_2 = \begin{pmatrix} G^+ \sin\beta - H^+ \cos\beta \\ \frac{1}{\sqrt{2}} \left[ -h \cos\alpha - H \sin\alpha + i \left( G \sin\beta - A \cos\beta \right) + v_2 \right] \end{pmatrix}$$

•  $\alpha$ ,  $\beta$  are the rotation angles that diagonalize the mass matrix of the scalars.

#### Scalar Potential

- The potential is defined by eight parameters  $m_{11}$ ,  $m_{22}$ ,  $m_{12}$ ,  $\lambda_i$ 's.
- Masses of the scalars are given by,

$$m_A^2 = \left(\frac{m_{12}^2}{v_1 v_2} - 2\lambda_5\right) v^2 , \quad m_{H^{\pm}}^2 = m_A^2 + (\lambda_5 - \lambda_4) v^2 ,$$

$$\begin{pmatrix} m_h^2 \\ m_H^2 \end{pmatrix} = R^T M R \text{ where }$$

$$M = \begin{pmatrix} m_{12}^2 \tan^2 \beta + \lambda_1 v_1^2 & -m_{12}^2 + (\lambda_3 + \lambda_4 + \lambda_5) v_1 v_2 \\ -m_{12}^2 + (\lambda_3 + \lambda_4 + \lambda_5) v_1 v_2 & m_{12}^2 \cot^2 \beta + \lambda_2 v_2^2 \end{pmatrix}$$

and  $\mathcal{R}$  is the rotation matrix, given by

$$\begin{pmatrix} \sin \alpha & -\cos \alpha \\ -\cos \alpha & -\sin \alpha \end{pmatrix}$$

#### **Trading Parameters**

- Instead of using  $\lambda_i$ 's, the theory can be defined in terms of more 'physical' parameters:
  - Masses of the scalars  $M_{H^{\pm}}, M_A, M_H, M_h$
  - Rotation angles  $\alpha$  and  $\beta$
  - $m_{12}$  Softly broken  $Z_2$  parameter-  $m_H = 125$  GeV restricts the value of  $m_{12}$ . We have considered  $m_{12}^2 = 1000$  GeV<sup>2</sup>.

#### Interactions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• The Yukawa interactions of the scalars is given by,

$$\begin{aligned} \mathcal{L}_{\text{Yuk}} &= \Sigma_k \quad \overline{Q_L^i} \,\mathcal{Y}_{1\,ij}^d \Phi_k d_R^j + \overline{Q_L^i} \mathcal{Y}_{1\,ij}^u \Phi_k^c u_R^j + \overline{Q_L^i} \mathcal{Y}_{1\,ij}^e \Phi_k^c e_R^j + h.c. , \\ &= -\sum_{f=u,d,\ell} \frac{m_f}{v} \left( \xi_h^f \overline{f} f h + \xi_H^f \overline{f} f H - i \xi_A^f \overline{f} \gamma_5 f A \right) \\ &- \frac{\sqrt{2} V_{ud}}{v} \overline{u} \left( m_u \xi_A^u P_L + m_d \xi_A^d P_R \right) - \frac{\sqrt{2}}{v} \xi_A^\ell \overline{\nu_L} \ell_R H^+ + h.c. , \end{aligned}$$

• Gauge interaction

$$\begin{split} \mathcal{L}_{V-H} &= \frac{m_Z^2}{v} \xi_h^V Z_\mu Z^\mu h + \frac{m_Z^2}{v} \xi_H^V Z_\mu Z^\mu H + 2 \frac{m_W^2}{v} \xi_H^V W_\mu W^\mu H \\ &+ 2 \frac{m_W^2}{v} \xi_h^V W_\mu W^\mu h + \frac{g \xi_H^V}{2 \cos \theta_W} (p_h^\mu + p_A^\mu) Z_\mu A h \\ &- \frac{i g \cos 2\theta_W}{2 \cos \theta_W} (p_{H^+}^\mu + p_{H^-}^\mu) Z_\mu H^+ H^- - i e \left( p_{H^+}^\mu + p_{H^-}^\mu \right) A_\mu H^+ H^- \\ &- \frac{g \xi_h^V}{2 \cos \theta_W} (p_H^\mu + p_A^\mu) Z_\mu A H \end{split}$$

## Interactions

|                | Туре І                     | Type II                     | Lepton-specific             | Flipped                    |
|----------------|----------------------------|-----------------------------|-----------------------------|----------------------------|
| $\xi_h^u$      | $\cos \alpha / \sin \beta$ | $\cos \alpha / \sin \beta$  | $\cos \alpha / \sin \beta$  | $\cos \alpha / \sin \beta$ |
| $\xi_h^d$      | $\cos \alpha / \sin \beta$ | $-\sin \alpha / \cos \beta$ | $\cos \alpha / \sin \beta$  | $-\sin\alpha/\cos\beta$    |
| $\xi_h^\ell$   | $\cos \alpha / \sin \beta$ | $-\sin \alpha / \cos \beta$ | $-\sin \alpha / \cos \beta$ | $\cos \alpha / \sin \beta$ |
| $\xi_H^u$      | $\sin \alpha / \sin \beta$ | $\sin\alpha/\sin\beta$      | $\sin \alpha / \sin \beta$  | $\sin\alpha/\sin\beta$     |
| $\xi_H^d$      | $\sin\alpha/\sin\beta$     | $\cos \alpha / \cos \beta$  | $\sin\alpha/\sin\beta$      | $\cos\alpha/\cos\beta$     |
| $\xi_H^\ell$   | $\sin \alpha / \sin \beta$ | $\cos \alpha / \cos \beta$  | $\cos \alpha / \cos \beta$  | $\sin\alpha/\sin\beta$     |
| $\xi^u_A$      | $\cot\beta$                | $\cot \beta$                | $\cot\beta$                 | $\cot \beta$               |
| $\xi^d_A$      | $-\cot\beta$               | $	an \beta$                 | $-\cot\beta$                | $	an \beta$                |
| $\xi^{\ell}_A$ | $-\cot\beta$               | $\tan\beta$                 | $	an \beta$                 | $-\cot\beta$               |

$$\xi_h^V = \sin(\beta - \alpha) \quad , \quad \xi_H^V = \cos(\beta - \alpha) \,.$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

# $\gamma\gamma$ and gg

シック 川田 (中国) (日) (日)

$$\begin{split} \mathcal{L}_{\gamma\gamma(\mathrm{gg})-\mathrm{H}} &= \frac{\alpha_s}{8\pi v} G^a_{\mu\nu} G^{a\mu\nu} \left( \xi^f_h F_{1/2}(\tau_f) h + \xi^f_H F_{1/2}(\tau_f) H \right) \\ &+ \frac{\alpha_e}{8\pi v} F_{\mu\nu} F^{\mu\nu} \left( \xi^f_h \frac{4}{3} F_{1/2}(\tau_f) + \xi^V_h F_1(\tau_W) \right) h \\ &+ \frac{\alpha_e}{8\pi v} F_{\mu\nu} F^{\mu\nu} \left( \xi^f_H \frac{4}{3} F_{1/2}(\tau_f) + \xi^V_H F_1(\tau_W) \right) H \\ &+ \frac{\alpha_e}{4\pi v} F_{\mu\nu} \tilde{F}^{\mu\nu} \left( \xi^f_A \frac{4}{3} F_{1/2}(\tau_f) \right) A \\ &+ \frac{\alpha_s}{4\pi v} G^a_{\mu\nu} \tilde{G}^{\mu\nu a} \left( \xi^f_A F_{1/2}(\tau_f) A \right) \end{split}$$

$$\xi_h^{\gamma} = \xi_h^f \frac{4}{3} F_{1/2}(\tau_f) + \xi_h^V F_1(\tau_W) \text{ and } \xi_H^{\gamma} = \xi_H^f \frac{4}{3} F_{1/2}(\tau_f) + \xi_H^V F_1(\tau_W) ,$$

#### Working Plan

- We consider H as the observed scalar i.e  $m_H = 125$  GeV.
- Where is the lighter scalar i.e h?
  - Can be lighter than  $m_h/2: H \to hh$  is possible and there will be exotic signatures such as  $4\mu, 4\gamma, 2b2\mu, 2\mu 2\tau$  etc.
  - $m_h > 65$  GeV: Single production will be same as that of SM Higgs with its decay to  $\gamma\gamma$ ,  $b\bar{b}$ ,  $\tau\tau$  and  $VV^*$  Higgs searches of Run-1 can be used to look for it.

#### Decay of h





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

## Special points

うつん 川 エー・エー・ エー・シック

- At  $\alpha \to \pi/2$ ,  $\xi_h^f$  vanishes and h behaves as fermiophobic- h decays dominantly to diphoton.
- $\alpha \sim \beta$ , the coupling of H is exactly same as SM Higgs termed as alignment limit and h becomes fermiophillic.
- The aim of the analysis to probe the parameter space robustly using interplay of various channels
  - ggF/tth  $\rightarrow \gamma \gamma$
  - $Wh/VBF \rightarrow \gamma\gamma$ •  $Wh/VBF \rightarrow f\bar{f}$
  - $tth \rightarrow tt\bar{f}f$

#### Constraints

(日) (日) (日) (日) (日) (日) (日)

- We considered the region consistent with
  - Perturbative bounds The quartic Higgs coupling  $C_{H_iH_jH_kH_l} < 4\pi$  -Large masses of scalars are not allowed.
  - The potential should have a stable minima i.e .

 $\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge \sqrt{\lambda_1 \lambda_2}$  and  $|\lambda_3 + \lambda_4 - |\lambda_5|| > -\sqrt{\lambda_1 \lambda_2}$ 

- The scattering amplitude of longitudinal gauge bosons with Higgs should follow perturbative unitarity.
- The T parameter forces  $m_A \sim m_{H^{\pm}}$  for  $m_{H^{\pm}} > 200$  GeV. For  $m_{H^{\pm}} < 200$  GeV,  $m_A$  is unconstrained.
- The charged Higgs contributes to processes such as  $B_s \rightarrow s\gamma, B_s \rightarrow \mu^+\mu^-$ . For Type-I scenario, the couplings are suppressed by  $\tan \beta$  and hence, the parameter space is not constrained for  $\tan \beta > 2$



#### LEP constraints

- LEP has extensively searched for light Higgs in  $e^+e^- \rightarrow Zh$  channel in  $b\bar{b}$  and  $\tau\tau$  channel.
- Null observation of excess over SM background put a stronger limit on  $\xi_h^V$  i.e sin  $(\beta \alpha)$
- LEP has also searched for fermiophobic Higgs in  $e^+e^- \rightarrow Z \rightarrow hA \rightarrow b\bar{b}\gamma\gamma$ . No signal implies that the fermiophobic limit  $(\alpha \sim \pi/2)$  is ruled out for  $m_h + m_A < 189$  GeV. We consider  $m_A = m_{H^{\pm}} = 500$  GeV.

うつん 川 エー・エー・ エー・シック

#### LHC observables

- H is the scalar at 125 GeV Signal strength measurement will constraint couplings of H i.e  $\xi_H^V, \xi_H^f, \xi_H^\gamma$
- We parametrize

$$\mu_j^i = \mu^i \mu_j, \quad \mu^i = \frac{\sigma(i \to H)}{\sigma(i \to H_{\rm SM})}, \quad \mu_j = \frac{{\rm BR}(H \to j)}{{\rm BR}(H_{\rm SM} \to j)}$$

|         | $f\bar{f}$                | $VV^*$                    | $\gamma\gamma$                 |
|---------|---------------------------|---------------------------|--------------------------------|
| ggF/ttH | $(\xi_H^f)^4$             | $(\xi^f_H)^2 (\xi^V_H)^2$ | $(\xi_H^f)^2 (\xi_H^\gamma)^2$ |
| VBF/VH  | $(\xi_H^V)^2 (\xi_H^f)^2$ | $(\xi_H^V)^4$             | $(\xi^V_H)^2 (\xi^\gamma_H)^2$ |

Table : The  $ij^{\text{th}}$  element is defined as  $\mu_j^i \times \Sigma_k(\xi_H^k)^2 \operatorname{BR}(H_{\text{SM}}^{125} \to k)$ . The summation is over k where k denotes all possible decay modes of H.



# LHC constraints

- Negative region of  $\sin(\beta \alpha)$  is ruled out by  $\mu_{125}^{\gamma\gamma}$  due to large destructive interference of top and W loop.
- Positive  $\sin(\beta \alpha)$  is ruled out from  $\mu_{125}^{ggF}$ . With increase in  $\sin(\beta)$ ,  $\mu_{H}^{ggF}$  decreases.
- With increase in  $\tan \beta$  amount of destructive interference decreases and  $\mu_H^{\gamma\gamma}$  approaches 1 Negative region is slightly favored for large  $\tan \beta$ .

#### LHC observables

• The effective scaling factor of total cross section for h where it has been produced in  $i^{th}$  channel and it decays to  $j^{th}$  channel is given by the

|         | $far{f}$                  | $VV^*$                    | $\gamma\gamma$                |
|---------|---------------------------|---------------------------|-------------------------------|
| ggF/tth | $(\xi_h^f)^4$             | $(\xi_h^f)^2 (\xi_h^V)^2$ | $(\xi_h^f)^2(\xi_h^\gamma)^2$ |
| VBF/Vh  | $(\xi_h^V)^2 (\xi_h^f)^2$ | $(\xi_h^V)^4$             | $(\xi_h^V)^2(\xi_h^\gamma)^2$ |

Table : The ij<sup>th</sup> element of the table is defined as  $\sigma_j^{h\ i} \times \Sigma_k(\xi_h^k)^2 \operatorname{BR}(h_{\mathrm{SM}} \to k)$ .  $\sigma_j^{h\ i}$  represents the production cross section of SM-like Higgs (with mass  $m_h$ ) in  $i^{th}$  channel times its branching ratio in  $j^{th}$  channel. The summation is over k where k denotes all possible decay modes of h.

・ロト ・ 通 ト ・ 王 ト ・ 王 ・ の へ ()・





- LHC has searched for a lighter Higgs in diphoton channel in ggF as well as associated gauge boson production mode.
- Excluded region corresponds to  $\alpha \sim \pi/2$  i.e fermiophobic limit.
- With increase in tan β, sin (β α) decreases and Wh production rate decreases -Wedge-like structure
- As mass increases Wh production rate decreases and the search does not rule out any additional parameter space.

## Outline

① Observations at LHC

**2** Future Prospect





#### Channels to explore

• We consider the following channel:

•  $pp \rightarrow \gamma \gamma$ 

- $pp \rightarrow Wh \rightarrow l\nu\gamma\gamma$
- $pp \to Wh \to l\nu b\bar{b}$
- $pp \to tth \to ttb\bar{b}$ .

## Channel 1: $pp \rightarrow \gamma \gamma$

- Our signal topology is two isolated photons.
- SM backgrounds mimicking two isolated photons are
  - $\gamma\gamma$  : quark-quark annihilation and gluon box process produces two isolated photons
  - $j\gamma: \pi^0 \to \gamma\gamma$  conversion produces two collimated photons that gets detected as a single photon at detector.
  - Drell Yan  $(Z \rightarrow e^+e^-)$ : Electron can fake a photon due to track mismeasurement and we consider 5% probability. Near Z-pole, the background is comparable to  $\gamma\gamma$ .



## Selection Criteria

- Inspite of large cross section for  $j\gamma$  process, the background can be suppressed by demanding tight isolation criteria.
- $p_T$  of photons arising from signal peak near  $m_h/2$  -We applied a hard  $p_T$  cut that suppresses irreducible  $\gamma\gamma$  background.
- Finally, owing to clean reconstruction of diphoton invariant mass, we select events with  $m_{\gamma\gamma}$ around 5 GeV bin of  $m_h$  i.e.  $|m_h - m_{\gamma\gamma}| < 2.5$  GeV.



Black( $\tan \beta = 3$ ), Blue ( $\tan \beta = 4$ ), Red ( $\tan \beta = 6$ ), Purple ( $\tan \beta = 10$ )

# Significance

- The channel can probe large α region i.e sin(β α) < 0</li>
  -constructive interference between top and W loop.
- The dip in significance corresponds to  $\xi_h^f \to 0$  and  $\xi_h^\gamma \to 0$  -Channel is insensitive for probing fermiophobic limit.
- With increase in  $\tan \beta$ , gluon fusion production rate decreases  $(\xi_h^f)$  and hence, significance decreases.
- For lower mass (till  $m_h = 90$ ) GeV, the significance is low even with  $3000 f b^{-1}$ .

#### Channel 2: $pp \to Wh \to l\nu\gamma\gamma$

- Signal : an isolated lepton, two isolated photons and  $E_T^{miss} > 30$  GeV.
- The channel is relatively cleaner with the following SM backgrounds:
  - hard photon emitted from  $pp \to W\gamma$  and Wj processes.
  - $pp \to WZ$  where  $Z \to e^+e^-$ .
- To suppress SM backgrounds, we selected events with

$$p_{T_{\text{lead}}}^{\gamma} > \frac{m_h}{2} - 10 \text{ GeV}, p_{T_{\text{sub}}}^{\gamma} > \frac{m_h}{2} - 15 \text{ GeV}, |m_{\text{inv}}^{\gamma\gamma} - m_h| < 2.5 \text{ GeV}$$





# Significance

- The channel has outstanding performance near fermiophobic limit i.e  $\alpha \sim \pi/2$  for moderate values of tan  $\beta$ .
- With increase in mass, production rate of *Wh* decreases and hence, significance decreases.
- For lower  $\tan \beta$ ,  $\alpha \sim \pi/2$  is already ruled out by LHC signal strength measurements.
- With increase in  $\tan \beta$ ,  $\sin (\beta \alpha)$ i.e  $\xi_h^V$  decreases.

・ロト ・四ト ・ヨト ・ヨ

## Channel 3: $pp \to Wh \to l\nu b\bar{b}$

- Signal is two b-tagged jets, an isolated leptons and  $E_T^{miss} > 30$  GeV.
- The channel accompanies huge SM backgrounds -
  - WZ Z decaying to  $b\bar{b}$  Maximum cross section around Z pole.
  - $t\bar{t}$  If one of the W escapes detection,  $\sigma_{tt}^{14TeV} = 900$  pb.
  - W+jets: jets fake b jets.
- The value of  $\xi_h^V$  is constrained for  $m_h \leq 90$  GeV and hence, the Wh production cross section is really small.
- It is nearly impossible to observe any excess using conventional approaches.

#### Way out...

- Instead of looking into two b-jets, consider the kinematic region where  $p_T^h > 2m_h$  Small fraction of events are present
- The two b's are collimated and can be encompassed with a fat jet of  $R > 2m_h/p_T^h$  We consider  $R_J = 0.8$ .
- We employed BDRS technique that hinges on massdrop criteria:
  - Split the fat jet into two subjets  $(j_1 \text{ and } j_2)$  such that  $m_{j_1} > m_{j_2}$ and  $m_{j_1} < 0.67 m_J$ .
  - Keep two subjets and check whether the subjets have b inside it.
  - Finally, select only those events having jet mass close to  $m_h$  i.e  $|m_J m_h| < 5$  GeV.



# Significance

- The dip in significance corresponds to  $\xi_h^f \to 0$  and  $\xi_h^V \to 0$  - Channel is insensitive for probing fermiophobic limit.
- The channel can probe large  $\xi_h^V$  region i.e  $\alpha$  away from  $\beta$ .
- $\alpha > \beta$  is slightly favored over  $\alpha < \beta$ as LHC signal strength measurements favors negative  $\sin (\beta - \alpha)$  more.
- For lower mass (till  $m_h = 90$ ) GeV, the significance is low even with  $3000 f b^{-1}$ .

・ロト ・四ト ・ヨト ・ヨ

## Channel 4: $pp \to tth \to ttb\bar{b}$

- We considered semi leptonic decay of top pairs. Signal is characterized by 4 b jets suffers large combinatorics.
- Instead of looking into four b-jets, we consider two fat jets.
- Out of these two jets, we tag one of them as top-jet (three subjets) using HEPTOPTAGER and the other as Higgs.
- To suppress ttjj background, we demand another b-jet outside the Higgs as well as top.
- Thus, we consider

 $p_T^{\ell} > 30 \text{ GeV}, \ \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}} > 30 \text{ GeV}, \ \mathbf{p}_{\mathrm{T}}^{\mathrm{J}} > 125 \text{ GeV} \text{ and } \mathbf{R}_{\mathrm{J}} = 1.2,$  $p_T^{\mathrm{top}} > 250 \text{ GeV}, \ 150 \text{GeV} < m_J^{\mathrm{top}} < 200 \text{GeV} \text{ and } |m_J^{\mathrm{Higgs}} - m_h| < 5.$ GeV



# Significance



- The channel is sensitive for low values of  $\tan \beta$  as the scaling is  $(\xi_h^f)^4$
- With increase in mass, production rate of *tth* decreases and hence, significance decreases.
- With increase in  $\alpha$ ,  $\xi_h^f$  decreases and significance decreases.

イロト イロト イヨト イヨト ヨ

# Summary

| $m_h$ | $\tan\beta$ | $\alpha^{\text{excluded}}$      |                | Future Prospect           |                          |                                             |
|-------|-------------|---------------------------------|----------------|---------------------------|--------------------------|---------------------------------------------|
| (GeV) |             | $LEP + \mu_{125}$               | $\gamma\gamma$ | α                         | Channel                  | $\mathcal{L} \text{ fb}^{-1} \text{ (ECM)}$ |
| 70    | 1.2         | $\alpha < 0.8,  \alpha > 1.2$   | -              | 0.8 - 0.9                 | ttbb                     | 1000 (14)                                   |
|       | 2.0         | $\alpha < 0.9,  \alpha > 1.3$   | -              | 1.0 - 1.1                 | ttbb                     | 3000 (14)                                   |
| 80    | 1.2         | $\alpha < 0.7,  \alpha > 1.1$   | -              | 0.7 - 1.0                 | ttbb                     | 1000 (14)                                   |
|       | 2.0         | $\alpha < 0.9, \alpha > 1.32$   | -              | 1.0 - 1.1                 | ttbb                     | 3000(14)                                    |
|       | 6.0         | $\alpha < 1.2,\alpha > 1.61$    | $\pi/2$        | $ \pi/2 - \alpha  < 0.01$ | $\ell \nu \gamma \gamma$ | 50 (13)                                     |
| 90    | 3.0         | $\alpha < 0.92,  \alpha > 1.55$ | $\pi/2$        | > 1.54                    | $\ell \nu \gamma \gamma$ | 50 (13)                                     |
|       | 6.0         | $\alpha < 1.0,  \alpha > 1.8$   | -              | $ \pi/2 - \alpha  < 0.01$ | $\ell \nu \gamma \gamma$ | 50(13)                                      |
| 100   | 1.2         | $\alpha < 0.7,  \alpha > 1.0$   | -              | 0.8 - 1.0                 | ttbb                     | 3000 (14)                                   |
|       | 4.0         | $\alpha < 0.95,  \alpha > 1.75$ | -              | $1.565 < \alpha < 1.584$  | $\ell \nu \gamma \gamma$ | 100 (13)                                    |
|       | 6.0         | $\alpha < 0.97,  \alpha > 1.96$ | -              | > 1.8                     | $\ell \nu b \bar{b}$     | 1000(14)                                    |
| 110   | 1.2         | $\alpha < 0.7,  \alpha > 1.0$   | -              | 0.7 - 0.9                 | ttbb                     | 3000 (14)                                   |
|       | 4.0         | $\alpha < 0.95,  \alpha > 1.75$ | -              | $1.563 < \alpha < 1.60$   | $\ell \nu \gamma \gamma$ | 500 (14)                                    |
|       | 6.0         | $\alpha < 0.97,  \alpha > 1.96$ | -              | > 1.9                     | $\gamma\gamma$           | 1000(14)                                    |

・ ・ ● ・ ・ = ・ ・ = ・ つ へ ○

#### Conclusion

- The null observation of any new physics scenario has provoked us to probe higher energy scale.
- We demonstrate an alternate scenario where a light particle is buried beneath huge SM backgrounds
- Detailed signal background analysis can probe the scalar in future run of LHC.
- Some of the region is testable with current luminosity.

## Outline

① Observations at LHC

**2** Future Prospect



▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - わへで

## $m_{12}$ with $m_H$





◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

#### S matrix unitarity

$$\begin{aligned} a_{\pm} &= \frac{3}{2} (\lambda_1 + \lambda_2) \pm \sqrt{\frac{9}{4} (\lambda_1 - \lambda_2)^2 + (2\lambda_3 + \lambda_4)^2}, \\ b_{\pm} &= \frac{1}{2} \left( \lambda_1 + \lambda_2 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_4^2} \right), \\ c_{\pm} &= \frac{1}{2} \left( \lambda_1 + \lambda_2 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_5^2} \right), \\ f_{+} &= \lambda_3 + 2\lambda_4 + 3\lambda_5, \quad f_{-} &= \lambda_3 + \lambda_5, \quad f_1 = \lambda_3 + \lambda_4, \\ e_1 &= \lambda_3 + 2\lambda_4 - 3\lambda_5, \quad e_2 &= \lambda_3 - \lambda_5, \quad p_1 = \lambda_3 - \lambda_4. \end{aligned}$$

・ ・ ● ・ ・ = ・ ・ = ・ つ へ ○

#### quartic coupling



sin (B-a)

$$\begin{split} A_{WW}^{HH}(0) &- \cos^2 \theta_W A_{ZZ}^{HH}(0) = \frac{g^2}{64\pi^2} \Big[ F_{\Delta\rho}(m_{H^+}^2, m_{A^0}^2) \\ &+ F_{\Delta\rho}(m_{H^+}^2, m_{H^0}^2) \sin^2(\beta - \alpha) + F_{\Delta\rho}(m_{H^+}^2, m_{h^0}^2) \cos^2(\beta - \alpha) \\ &- F_{\Delta\rho}(m_{A^0}^2, m_{H^0}^2) \sin^2(\beta - \alpha) - F_{\Delta\rho}(m_{A^0}^2, m_{h^0}^2) \cos^2(\beta - \alpha) \Big], \end{split}$$



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 めんぐ

## T parameter



▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

# Tagging Boosted Tops



- Instead of considering 3 resolved  $(\Delta R = 0.4)$  jets, consider a fat jets with  $(\Delta R = 1.2)$ .
- Look for the decay product inside the jet: Find hard substructure by undoing the last clustering, if  $m_{daughter} > 0.2 * m_{parent}$  keep the daughters. We need at least three hard substructures.
- Filter the jets and select those jets whose mass is close to the  $m_t$ . The subjets are then made to satisfy top decay kinematics.