DE LA RECHERCHE À L'INDUSTRIE

Olivier Gevin

Slide & Design: Florent Bouyjou

CEA Saclay, France

www.cea.fr

TDC multicanal pour mesure du temps d'arrivée.

Institute of Research into the Fundamental Laws of the Universe SEDI

$1 m \wedge (1 + \Lambda rr)/2$	$POUR \mathbf{H}(\mathbf{C} \mathbf{C} \mathbf{A})$

Type(s) de TDC(s) réalisé(s)	Pulse train amplifier
Type d'intégration: ASIC ou FPGA	ASIC
ASIC dédié TDC ou TDC intégré dans ASIC front-end	TDC intégré dans ASIC front-end
Nombre de voie(s)	32 (64 ou 72 visés)
Technologie (pour les ASICs)	TSMC 130nm
Gamme dynamique en temps	1,6 µs
Résolution temporelle - Pas de quantification: simulés et mesurés	11 bits, LSB=12.5 ps Simulé.
Taux de comptage / temps mort individuel	40MHz (11 bits)
Consommation par voie	2mW. Ne consomme qu'en cas d'événement
Type de discriminateur utilisé, (selon) jitter, walk	

CONTEXTE

Collaboration between OMEGA and IRFU in end 2016 resulted in IRFU's involvement in the design of a fast multi-channel TDC (time to digital converter) for the ToA (Time of Arrival) and its associated PLL (phase-locked loop).

TDC (time to digital converter) for **ToA** of large-scale systems with many channels:

Measure the "relative" phase of an event with respect to the input bunch clock at 40 MHz.

PLL (phase-locked loop) will provide an internal clock in the chip with multiples frequencies, less noisy and in phase with the external bunch clock in order to have a more precise **time to digital conversion**.

TDC specifications	
Resolution	< 25 ps step LSB
Bits	10 bits (over 25 ns)
Conversion rate	> 40 MHz (bunch clock)
Power consumption	< 2 mW / channel
Area	Small for multichannel
Technology	TSMC 130 nm
Temperature	-30 °C

cea

CHOICE OF TDC ARCHITECTURE OPTIMIZED FOR FE HGCAL

New "Two-step" architecture incorporating a **pulse train amplifier** designed and tested by [KwangSeok Kim] in 2013 :

How it works ? : Kim publication

- 1st conversion step called Coarse TDC (CTDC) → classical DLL (Delay-locked loop) line (4 most significant bits) according to a START bit and STOP bit.
- The stop signal is flashed and the residue of this conversion between the last DLLs of the CTDC need to be interpolated by using a Pulse Replicator (PR).
- This residual pulse train is sent to a residue integrator called Fine TDC (FTDC) based on a DLL line (3 LSBs)

Advantages : high speed conversion and low power consumption Weaknesses : not controlled in terms of process, mismatch, temperature ...

Improvments in our chip :

- Increase the time range by adding a counter
- keep performance under temperature and process variations

cea

CHOICE OF TDC ARCHITECTURE OPTIMIZED FOR FE HGCAL

New "Two-step" architecture incorporating a **pulse train amplifier** designed and tested by [KwangSeok Kim] in 2013 :

DE LA RECHERCHE À L'INDUSTR

MULTI-CHANNEL TDC ARCHITECTURE FOR THE TOA

Multi-channel TDC architecture :

CLOCK SYNCHRONIZER AND CTDC

Clock synchronizer and CTDC :

Synchronizer + delay-line CTDC

Power consumption only when an event arrives CLK=160MHz (T=6.25ns) Profondeur=32 LSB=6.25/32=195ps.

CTDC ENCODER CODE evolution for different time of arrival START_TDC between 2 and 10 ns and for CLK_PLL = 160 MHz

Warning : in this figure there is not enough simulated point to get a realistic estimation of the DNL and INL

RESIDUE EXTRACTION

CTDC and Residue extraction :

DE LA RECHERCHE À L'INDUSTR

Cez

PULSE REPLICATOR

Pulse replicator :

DE LA RECHERCHE À L'INDUSTR

FTDC : RESIDUE INTEGRATOR

CTDC residue NOISE histogram x10 Scale with START_TDC 2,85 ns and with PLL = 160 MHz Extracted with perfect input clock

Std Dev : 8,22/10 = 822 fs

DE LA RECHERCHE À L'INDUSTRI

LAYOUT

Time Of Arrival pour HGCAL

Type(s) de TDC(s) réalisé(s)	Pulse train amplifier
Type d'intégration: ASIC ou FPGA	ASIC
ASIC dédié TDC ou TDC intégré dans ASIC front-end	TDC intégré dans ASIC front-end
Nombre de voie(s)	32 (64 ou 72 visés)
Technologie (pour les ASICs)	TSMC 130nm
Gamme dynamique en temps	1,6 µs
Résolution temporelle - Pas de quantification: simulés et mesurés	11 bits, LSB=12.5 ps Simulé.
Taux de comptage / temps mort individuel	40MHz (11 bits)
Consommation par voie	2mW. Ne consomme qu'en cas d'événement
Type de discriminateur utilisé, (selon) jitter, walk	

Soumission en juin 2017.

=> Rendez vous aux journées VLSI 2018 pour des résultats de mesure.

PLL ARCHITECTURE

- **Multiplier** : Generate 160 MHz from 40 MHz (have an 1.28 GHz output frequency for output)
- Internal clock in phase with external 40 MHz (phase detector)
- Cleaner : Reduce the jitter of the external 40 MHz (estimated at 25 ps) in order to have a cleanest possible internal clock and less than the quantification noise of the TDC < 3.52 ps
 Minimum and maximum lock frequencies : 21 to 47,6 MHz (BW : 20 MHz)

TIME BUDGET

Maximum conversion time :

10 bits TDC = 16 ns 11 bits TDC = 22 ns DE LA RECHERCHE À L'INDUSTR

Internal DLL channel calibration :

CTDC (Coarse TDC) and FTDC (Fine TDC) → Internal servo-controlled DLL

To have the **same DLL time response** according to the temperature and process variations

External initial load voltage & adjustable current injection

Initial lock DLL Calibration phase :

VD_CTDC_P & VD_FTDC_P internal calibration init to 0 V with VD_CTDC_N = 1,2 V and VD_FTDC_N = 1,2 V and VBIAS_N = 400 mV at -40, 0 and 40 °C [internal buffer]

DE LA RECHERCHE À L'INDUSTI

LAYOUT AND SIMULATION RESULTS

TDC layout :

Area = 140 μ m x 310 μ m Triple wells under analog and digital

PLL layout :

Area = 515 μ m x 141 μ m Triple wells under analog and digital

Simulation R&D TDC
24.4 / 12.2 ps
10 / 11 bits (over 25 ns)
≈1 ps rms
10 bits TDC = 62,5 MHz
11 bits TDC = 45,6 MHz
To be done
During the conversion 2,18 mW [static
and dynamic] or 40 µW [static]
Internal
250 μm x 160 μm
TSMC 130 nm
-40 and 40 °C

PLL	Simulation R&D PLL
Input frequency	40 MHz (Bunch clock)
Output frequecy	MAX : 1.28 GHz
	Output of intermediate frequencies :
	(640, 320, 160 MHz)
Jitter	Jitter cleaner = 2.2 ps rms
	Cleaner 94 % (for 25 ps input jitter)
Power consumption	1.91 mW
Area	515 μm x 141 μm
Technology	TSMC 130 nm
Temperature	-40 and 40 °C

PLL TRANSIENT JITTER

Transient noise jitter injection with Cadence jitter source [extracted, buffer] @ 27 °C :

35 ps rms jitter noise added to perfect 40 MHz input clock (left) and the jitter of the 160 MHz output (right)

DESIGN STATUT

TDC	Statut
Schematics	OK
Temperature variation -40 to 40 °C	OK
Monte-Carlo (process & mismatch) -40 and 40 °C	OK
Layout	OK
Extracted view	OK
Fine characterization process (INL, DNL, etc)	To be done

PLL	Statut
Schematics	OK
Temperature variation -40 to 40 °C	OK
Monte-Carlo (process & mismatch) -40 and 40 °C	OK
Layout	OK
Extracted view	OK
Fine characterization process	To be done

Next steps	Statut
32 Multi-channel TDC & PLL	To be done
Connect the ToA TDC in HGROCv1	To be done
Add internal slow control registers	To be done
Add internal references (DAC)	To be done
PAD, drivers connections, etc	To be done
DRC & LVS verifications	To be done
Final simulations	To be done

DLL_CTDC & DLL_FTDC DELAYS

DLL_CTDC & DLL_FTDC delays with VD_P variations, VD_N = 1,2 V and at -40, 0 and 40 °C [parasitics included]

Simulation moderate Spectre APS ++aps NONE Preset

In testbeam : jitter = 500 ps/Q(fC) (+) 20 ps

In HGROC, simulated jitter = 1.2 ns/Q(fC)

Timing Resolution (Mean Silicon - MCP) vs Mean Sensor Effective Signal

DE LA RECHERCHE À L'INDUSTRI

GLOBAL ARCHITECTURE

CEA - Saclay / DRF/Irfu/SEDI | BOUYJOU | CMS - 01 2017 | PAGE 22