Tutorial on Frequency Synthesis

Part I – Phase Locked Loop (PLL)

Pr. Yann DEVAL May, 2017

Outline

- Principle of phase locked loops
- Key building block examples
- PLL as a frequency synthesizer
- The linear model
	- Open and closed loop equations
	- Transfer function
- Frequency ranges of interest

Principle

• Copying the reference frequency with the VCO frequency – thanks to phase lock

Outline

- Principle of phase locked loops
- Key building block examples
- PLL as a frequency synthesizer
- The linear model
	- Open and closed loop equations
	- Transfer function
- Frequency ranges of interest

Phase detector

• Transfer function (theoretical)

$$
V_p = V_0 + \frac{V_{\text{max}} - V_{\text{min}}}{\varphi_{\text{max}} - \varphi_{\text{min}}}\varphi
$$

Phase frequency detector

Voltage controlled oscillator

• Transfer function (theoretical)

Outline

- Principle of phase locked loops
- Key building block examples
- PLL as a frequency synthesizer
- The linear model
	- Open and closed loop equations
	- Transfer function
- Frequency ranges of interest

Outline

- Principle of phase locked loops
- Key building block examples
- PLL as a frequency synthesizer
- The linear model
	- Open and closed loop equations
	- Transfer function
- Frequency ranges of interest

Linear modelisation (phase)

$$
\omega_{VCO}(t) = \frac{d\theta_{VCO}(t)}{dt} \qquad \theta_{VCO}(t) = \int_{0}^{t} \omega_{VCO}(t)dt \qquad \theta_{VCO}(s) = \frac{\omega_{VCO}(s)}{s}
$$

Some equations

Transfer function - OL

Closed loop bandwidth

Closed loop bandwidth (cont')

$$
B_{3dB} \approx \frac{\omega_n}{\pi} = \frac{1}{\pi \sqrt{N}} \cdot \sqrt{\frac{K_0 K_d}{\tau_1}} = 2f_n
$$

Closed loop bandwidth

- V_p includes not only a DC value (of interest) but also an unwanted component at f_{ref} (among others)
- •The loop filter (LPF) has to attenuate as much as possible this component : typically τ_1 is set one decade away from 1/ f_{ref}

Outline

- Principle of phase locked loops
- Key building block examples
- PLL as a frequency synthesizer
- The linear model
	- Open and closed loop equations
	- Transfer function
- Frequency ranges of interest

Frequency ranges of interest

∆ω**^L : Lock range**

PLL is always locked, and quickly react

Frequency ranges of interest (cont')

$\Delta \omega_{\rm PO}$ **: Pull-Out range**

PLL reacts a bit more slowly, though it still relocks quickly.

Frequency ranges of interest (cont')

$\Delta \omega_{PI}$ **: Pull-In range**

A signal within this range will allow the PLL to lock – but it may be a long process to do so

Frequency ranges of interest (end)

∆ω**^H : Hold range**

An already locked signal can be hold within this range but if there is any variation the system will collapse

Summarize - PLL and synthesizer

- A complex system to deal with…
- A 2nd order system (or even more) in which the stability is a matter of concern
- As the divider is integer, the frequency step yields the reference, which determines the bandwidth in return
- A linear model used to define a sampled system is a bit non rigorous – but there's no way do avoid the liar…

Tutorial on Frequency Synthesis

Part II – Synthesizer architectures

Pr. Yann DEVAL May, 2017

Outline

- Phase noise in oscillators
- Noise shaping in PLL
- PLL architectures

Phase noise : NCR calculation

NCR : effect of Q

Outline

- Phase noise in oscillators
- Noise shaping in PLL
- PLL architectures

Limited PLL bandwidth

Outline

- Phase noise in oscillators
- Noise shaping in PLL
- PLL architectures

Integer-N PLL

Integer-N & dual-modulus

Fract-N synthesizers

N goes from P to $(P+1)$ when M goes from 0 to K.

Offset synthesizer

Comparison is still preformed at f_{ref1} !

Conclusion

Integrated VCO present strong limitations due to silicon technologies (low resistivity substrate)

- Low cost technologies for high volume production will not solve the problems
- **Improvement of frequency generation** relies on novel synthesizer characteristics

Hot topic

Tutorial on Frequency Synthesis

Part III – Advanced Architectures

Pr. Yann DEVAL May, 2017

Outline

- Dual loop synthesizers – The Injection locked oscillator
- DLL-based synthesizers
	- Classical DLL
	- Factorial DLL
- All Digital PLL

Wide bandwidth synthesizer

- Swallow counter synthesizer
	- Channel spacing limitations
- Offset synthesizer
	- Several oscillators : coupling & pulling
- Fractional synthesizer
	- Spurious
- Multi-loop synthesizer
	- Complexity

Double-Loop Synthesizer

Double-loop synthesizer : bandwidth improvement

$$
B_{3dB} = \frac{\omega_n}{2\pi} \cdot \sqrt{2\zeta^2 + 1 + \sqrt{\left(2\zeta^2 + 1\right)^2 + 1}} \approx \frac{\omega_n}{\pi}
$$

Natural frequency :

$$
\omega_n = \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{K_{\phi} K_0}{\tau_1}} = \frac{\omega_{PL}}{\sqrt{N}}
$$

$$
B_{3dB} \propto \frac{1}{\sqrt{N}}
$$

Yann DEVAL - IN2P3 - Tutorial on PLL

iMS

Double-loop synthesizer : the drawbacks

- Complexity
	- Silicon & power consumption
	- Coupling effects
- High frequency RF loop reference
	- PFD dead zone
	- Charge pump bandwidth

The ILO-based synthesizer

The ILO as the RF loop

The sub-harmonic ILO princip $\left(\frac{c}{c}\right)$

The ILO theory Huntoon & Weiss (1947) and Badets (1999)

 2^{+} $\sqrt{2}$ **0** $2 \cdot \frac{|{}'syn|}{|V|} \cdot \sqrt{F_g^2 + F_b^2}$ *V I* $\Delta F = 2 \frac{|\Delta V^{\prime}|}{|V|} \sqrt{F_{Q}^2 + \Delta V_{Q}^2}$

Differential current generator

5.4 GHz SO test chip (6M 0.25µm VLSI CMOS)

The CMOS version

Summarize - ILO

- ILO as a frequency generation device – Easy to use - thanks to the theory
- ILO-based synthesizer
	- Wideband
	- Low-power
	- Low-complexity
	- Low silicon area

Outline

- Dual loop synthesizers – The synchronous oscillator
- DLL-based synthesizers
	- Classical DLL
	- Factorial DLL
- All Digital PLL

The DLL-based synthesizer

Delay Locked Loop

Delay Locked Loop / Phase Locked Loop

No VCO means 1st order system !

- Stability is guaranteed (theoretically)
- High bandwidth is feasible

 V_{out}

The Factorial DLL

Outline

- Dual loop synthesizers – The synchronous oscillator
- DLL-based synthesizers
	- Classical DLL
	- Factorial DLL
- All Digital PLL

From M. PERROTT

- Time resolution is fixed by the delay line and its delay cell
- Similar to a flash converter

From M. PERROTT

Digitally Controlled Oscillator (DCO)

- Frequency resolution is fixed by the unit capacitor
- Flat $C(V)$ zones are targeted to add noise margin $F_{From M. PERROT}$

AD-PLL issues

- Time resolution adds quantification noise from the TDC
- Frequency resolution generates spurs

Dithering is mandatory (∆Σ modulator) to achieve proper accuracy and purity

Complexity dramatically increased

Conclusion

- Not only PLL are of interest whenever one wants to deal with frequency generation
- New architectures are still to be find
- The more digital the approach, the better for flexibility
- Wideband topologies are required to deal with noisy (fully integrated) oscillators
- Accuracy yields complexity
- CAD tools are not an option

