

cern.ch/tmrg

Szymon KULIS, EP-ESE-ME, CERN

Digital synthesis for
rad-hard components

Single Event Upsets mitigation techniques with TMRG tool

Ecole de Microélectronique IN2P3
14 - 19 May 2017, Bénodet

Agenda

2 Triple Modular Redundancy Generator cern.ch/tmrg

● Radiation Effects
– Single-event effects

– Mitigation Techniques
● Triple Modular Redundancy Generator

– Design flow

– Triplicating the design (tmrg)

– Physical implementation (plag)

– Verification (tbg, seeg)
● Tools tips & tricks

● Summary

Many thanks to: Paulo Moreira, Pedro Leitao, Davide Ceresa,
Alessandro Caratelli, Krzysztof Świentek, Xavi Llopart Cudie,
Tuomas Poikela, Cesar Marin Tobon

3 Triple Modular Redundancy Generator cern.ch/tmrg

4 Triple Modular Redundancy Generator cern.ch/tmrg

5 Triple Modular Redundancy Generator cern.ch/tmrg

6 Triple Modular Redundancy Generator cern.ch/tmrg

7 Triple Modular Redundancy Generator cern.ch/tmrg

8 Triple Modular Redundancy Generator cern.ch/tmrg

9 Triple Modular Redundancy Generator cern.ch/tmrg

10 Triple Modular Redundancy Generator cern.ch/tmrg

11 Triple Modular Redundancy Generator cern.ch/tmrg

12 Triple Modular Redundancy Generator cern.ch/tmrg

13 Triple Modular Redundancy Generator cern.ch/tmrg

14/136 Triple Modular Redundancy Generator cern.ch/tmrg14 Triple Modular Redundancy Generator cern.ch/tmrg

15 Triple Modular Redundancy Generator cern.ch/tmrg

16 Triple Modular Redundancy Generator cern.ch/tmrg

17 Triple Modular Redundancy Generator cern.ch/tmrg

18 Triple Modular Redundancy Generator cern.ch/tmrg

19 Triple Modular Redundancy Generator cern.ch/tmrg

20 Triple Modular Redundancy Generator cern.ch/tmrg

SEU sensitivity of a device

21 Triple Modular Redundancy Generator cern.ch/tmrg

SEU sensitivity of a device

22 Triple Modular Redundancy Generator cern.ch/tmrg

SEU sensitivity of a device

23 Triple Modular Redundancy Generator cern.ch/tmrg

SEU sensitivity of a device

24 Triple Modular Redundancy Generator cern.ch/tmrg

SEU sensitivity of a device

25 Triple Modular Redundancy Generator cern.ch/tmrg

26 Triple Modular Redundancy Generator cern.ch/tmrg

SEE mitigation techniques

27/136 Triple Modular Redundancy Generator cern.ch/tmrg27 Triple Modular Redundancy Generator cern.ch/tmrg

28 Triple Modular Redundancy Generator cern.ch/tmrg

SEE mitigation techniques

29 Triple Modular Redundancy Generator cern.ch/tmrg

SEE mitigation techniques

30 Triple Modular Redundancy Generator cern.ch/tmrg

31/136 Triple Modular Redundancy Generator cern.ch/tmrg31 Triple Modular Redundancy Generator cern.ch/tmrg

32/136 Triple Modular Redundancy Generator cern.ch/tmrg32 Triple Modular Redundancy Generator cern.ch/tmrg

Cell design -dice
● Dual interlock cell
● Pros:

– Protects against hit on one node
● Drawbacks:

– Writing to the cell required access to 2 nodes
– Recovery time needed after SEU (limitation for high freq circuits)

● Output glitch
● Risign clock during recovyer can store wrong data

– Charge collection by multiple nodes can lead to SEU anyway → results
bonacini

33 Triple Modular Redundancy Generator cern.ch/tmrg

34 Triple Modular Redundancy Generator cern.ch/tmrg

35 Triple Modular Redundancy Generator cern.ch/tmrg

36 Triple Modular Redundancy Generator cern.ch/tmrg

37 Triple Modular Redundancy Generator cern.ch/tmrg

38 Triple Modular Redundancy Generator cern.ch/tmrg

39 Triple Modular Redundancy Generator cern.ch/tmrg

40 Triple Modular Redundancy Generator cern.ch/tmrg

tmr

41 Triple Modular Redundancy Generator cern.ch/tmrg

tmr

42 Triple Modular Redundancy Generator cern.ch/tmrg

tmrTMR: how to triplicate FSM

logicA

logicB

logicC

in voter S

D Q

D Q

D Q

clk

SA

SB

SC

clk
in
SA
SB
SC
S

state0

state0

state0

state0

43 Triple Modular Redundancy Generator cern.ch/tmrg

tmr

44 Triple Modular Redundancy Generator cern.ch/tmrg

45 Triple Modular Redundancy Generator cern.ch/tmrg

46 Triple Modular Redundancy Generator cern.ch/tmrg

47 Triple Modular Redundancy Generator cern.ch/tmrg

48 Triple Modular Redundancy Generator cern.ch/tmrg

49 Triple Modular Redundancy Generator cern.ch/tmrg

50 Triple Modular Redundancy Generator cern.ch/tmrg

51 Triple Modular Redundancy Generator cern.ch/tmrg

52 Triple Modular Redundancy Generator cern.ch/tmrg

53 Triple Modular Redundancy Generator cern.ch/tmrg

54 Triple Modular Redundancy Generator cern.ch/tmrg

55 Triple Modular Redundancy Generator cern.ch/tmrg

56 Triple Modular Redundancy Generator cern.ch/tmrg

57 Triple Modular Redundancy Generator cern.ch/tmrg

58 Triple Modular Redundancy Generator cern.ch/tmrg

59 Triple Modular Redundancy Generator cern.ch/tmrg

60 Triple Modular Redundancy Generator cern.ch/tmrg

61 Triple Modular Redundancy Generator cern.ch/tmrg

62 Triple Modular Redundancy Generator cern.ch/tmrg

63 Triple Modular Redundancy Generator cern.ch/tmrg

64 Triple Modular Redundancy Generator cern.ch/tmrg

Triple Modular Redundancy Generator

TMRG : motivation

Requirements, the tool should:

- be compatible with the ASIC design flows used in the HEP community
 (Verilog RTL, Cadence tool chain)

- not over constraint the user's coding style
 (the source Verilog must be synthesizable)

- allow to obtain various flavors of TMR (registers only, full triplication, …)

- assists in the physical implementation stage (synthesis, P&R)

- assists the designer in the verification process (generation of SEE)

- it can be run in batch mode (fully automatic flow)

The purpose of the TMRG tool set is to automatize

the process of triplicating digital circuits.

65 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG : project status

● Project started: Jan 2015

● Project size: >13000 lines of code

● Documentation size: 69 pages (pdf&html)

● Active user base: >7 designers

● “Open source”, hosted in CERN git repository (700+ commits)

66 Triple Modular Redundancy Generator cern.ch/tmrg

Initial

development

Minor bug fixes

New features

and new syntax

support

Projects using TMRG

● Chips already submitted and tested:

– GBLD10+ – 10 Gbps laser driver

– LDQ10 – Quad array laser driver (4x10 Gbps)

– VLAD – Quad array laser driver (4x10 Gbps)

– DRAD – Digital radiation test chip

– ePLL-CDR – PLL/CDR circuit macro block

● (relatively big) Chips to be submitted in following months

– lpGBT – 10 Gbps transceiver

– MPA – Macro Pixel ASIC for CMS tracker

– SSA – Strip Senor ASIC for CMS tracker

– SALT – Silicon ASIC for LHCb Tracking

67 Triple Modular Redundancy Generator cern.ch/tmrg

Before starting ...

The TMRG tool IS NOT a single button solution which will make your

CHIP design safe from single event upsets.

You, as a designer, have to know which parts of your circuits should (have to)

be protected. The TMRG tool will save you the time needed for copy-pasting

your code and will minimize probability that you will forget to change some

postfix in your triplicated variable names. It will also simplify the physical

implementation and verification process by providing some routines.

The TMRG is open source, however, it CAN NOT be made publicly available. The

tool can be considered as dual-use item as it can be used to produce electronic

circuits which are resistant to radiation.

If you find any problem with the tool chain please report it!

Only by having your feedback we will be able to improve the tool chain!

68 Triple Modular Redundancy Generator cern.ch/tmrg

Digital design flow

69 Triple Modular Redundancy Generator cern.ch/tmrg

Digital design flow

Toolset:

● tmrg – triplicates the Verilog
code and generates
synthesis constrains (for
Design Compiler)

● tbg – generates generic test
bench template (with
/without TMR, SEE injection,
post synthesis, post PNR)

● plag – generates placement
directives (for Encounter)

● seeg – generates Single
Event Effects stimulus to be
used for transient
simulations

70 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG
triple modular redundancy generator

71 Triple Modular Redundancy Generator cern.ch/tmrg

Constraining the design
The TMRG tool:

● lets the designer decide which blocks and signals are to be triplicated by
using TMRG directives (placed in Verilog code):

● automatizes the “conversion” between triplicated and not triplicated signals:
– if a non triplicated signal is connected to a triplicated signal a passive

fanout is added

– if a triplicated signal is connected to a non triplicated signal a majority
voter is added

*)

72 Triple Modular Redundancy Generator cern.ch/tmrg

*) see full TMR option later

TMRG Example1

Lets consider simple combinatorial module:

The module models an inverter, which contains only one input and one output.

73 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG Example1: Triplicating everything

TMRG

TMRG directive

TMRG

74 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG Example1: Logic and output triplication

TMRG

fanout for in net

TMRG

Non triplicated signal

connected to

triplicated signal

75 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG Example1: Input and logic triplication

TMRG

TMRG

voter for comb

logic net

Triplicated signal

connected to

non triplicated signal

76 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG Example1: Logic triplication

TMRG

Triplicated signal

connected to

non triplicated signal

TMRG

Non triplicated signal

connected to

triplicated signal

77 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG Example1: Input and output triplication

TMRG

TMRG

78 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG Example: Summary

TMRG tool behavior can be controlled by TMRG constrains

(the same)

Verilog RTL

TMRG
(with constraints)

79 Triple Modular Redundancy Generator cern.ch/tmrg

Majority voter, fanout ?

common/voter.v common/fanout.v

Some definitions:

If needed this definitions are added to the output file,
can also be replaced by user defined modules.

80 Triple Modular Redundancy Generator cern.ch/tmrg

FSM Example: triplication without voting

TMRG

TMRG

comb logic

We know that this is

not what we want ...flip flop

If an error occurs in one branch, it will propagate along the branch. If there is no repair mechanism, after the first error the effective cross
section is doubled with respect to the non triplicated circuit. In order to eliminate this problem, a voted feedback is needed!

81 Triple Modular Redundancy Generator cern.ch/tmrg

FSM Example: triplicating only the register

TMRG

TMRG

Triplicate state

Majority Voter
added automatically

(conversion from triplicated
to non triplicated signal)

82 Triple Modular Redundancy Generator cern.ch/tmrg

FSM Example: triplicating the register and clock skew

TMRG

TMRG
Triplicate state

Triplicate clk

Majority Voter
added automatically

(conversion from triplicated
to non triplicated signal)

83 Triple Modular Redundancy Generator cern.ch/tmrg

Introducing full TMR

To generate full TMR (3 interconnected majority voters) a net
declaration with a specific name (Voted postfix) has to be used:

This syntax ensures that non triplicated Verilog code can be
simulated and/or synthesized.

84 Triple Modular Redundancy Generator cern.ch/tmrg

Full TMR: Voting triplicated signals

TMRG

TMRG

Insert 3 voters

85 Triple Modular Redundancy Generator cern.ch/tmrg

Full TMR: logic triplication and voting

TMRG

TMRG

Insert 3 voters for input signals
Insert 3 voters for output signals

Do you want to have voter before and after the logic? Probably not … but you CAN.

86 Triple Modular Redundancy Generator cern.ch/tmrg

FSM Example: triplication and voting

comb logic

flip flop

TMRG

TMRG

Insert 3 voters

statenextStateVoted

nextState

87 Triple Modular Redundancy Generator cern.ch/tmrg

Module instantiations

General concepts related to module instantiation triplication:

● Only named connections are supported for module instantiation!

● All modules must be known at the time of triplication.

● If a module is not be triplicated internally (e.g. library cell, analog
macro cell) one has to add directive do_not_touch in the module
body.

● For all other modules (not from library and not having
do_not_touch constrain):

– triplication is always done inside the module,

– a new (triplicated) module has a TMR postfix appended to the
name,

– I/O names may change.

88/136 Triple Modular Redundancy Generator cern.ch/tmrg

Triplicating a fixed macro cell

89/136 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG

TMRG

Not triplicating a fixed macro cell

90/136 Triple Modular Redundancy Generator cern.ch/tmrg

Do not triplicate logic01 instance

TMRG

TMRG

Majority Voter and fanout
added automatically

(conversion between triplicated and
non triplicated signals)

Triplicating user’s modules

91/136 Triple Modular Redundancy Generator cern.ch/tmrg

When the module being instantiated is a subject of triplication, only connections
are modified and voters and fanouts are added if necessary.

TMRG

TMRG

Triplication brings new features - tmrError

92/136 Triple Modular Redundancy Generator cern.ch/tmrg

● It may be desirable to know if one of the triplicated signals is different from
the other two (whether an single event upset has happened or not)

● The TMRG tool always generates:

– tmrError output associated with each voter.
For a signal mem the voter can look like:

– Combination (OR) of all error signals
inside given module

● To make use of the signal (particular or global) it is enough to make a declaration:

This definition will be removed by the TMRG tool and the wire will be connected
directly to the error output of the voter. By declaring tmrError the designer gains
access to the signal and can implement the required functionality. Moreover,
assigning zero value ensures that the non triplicated circuit is not affected and can
be simulated.

● If user does not use the tmrError functionality it will be optimized out by the synthesizer

tmrError Example

93/136 Triple Modular Redundancy Generator cern.ch/tmrg

Assigning zero value to tmrError
ensures that the non triplicated circuit is
not affected and can be simulated.

TMRG

TMRG

[...]

1

2

3

TmrError can be used to implement SEU counter!

Definition for tmrError

Other features

● Accessing individual signals from a triplicated bus
(e.g. power on reset monitoring)

● Generating a triplicated bus from other signals
(e.g. clock gating for production testing)

● Generating identical slices of logic (timing critical logic)
(e.g. feedback divider for PLL)

● Specify majority voter and fanout cells on per module basis
(e.g. different voter for clock multiplexer)

● Integrated with SVN / CLIOSOFT sos version control systems

94 Triple Modular Redundancy Generator cern.ch/tmrg

How to constrains the design ?

Constrains do not have to be places in the source code directly. Constrains can be
● loaded from a configuration file

– The configuration file uses standard INI file format. It is a simple text file with a basic structure
composed of sections, properties, and values. An example file may look like:

– To load a configuration file, you have to specify its name as a command line argument:

● provided as a command line arguments. This approach is not very effective for constraining the
whole project, but may be really handy in the initial phase. A possible constrains are shown bellow:

95 Triple Modular Redundancy Generator cern.ch/tmrg

Preserving TMR code during synthesis

Most of the code generated by TMRG tool is redundant
 → synthesizer will want to remove it (undesirable behavior!)

The TMRG generates a set of constrains for you which will force Design Compiler not
to discard the redundant logic:

As a result, a file comb06TMR.sdc will be generated. The file is a SDC file which can
be loaded from the RC.

Constrains may affect

the logic optimization

96 Triple Modular Redundancy Generator cern.ch/tmrg

RTL Compiler / Genus tips & tricks

Problem: how to make sure that the synthesis tool does not remove a specific cell?

Example Verilog code:

SDC constrain file:

● Any of INVD1 instances will not be touched!

RC/Genus script:

● Specific instance will be preserved!

97 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG performance

98 Triple Modular Redundancy Generator cern.ch/tmrg

● Small projects/files - the TMRG tool should be usually very fast. As the TMRG does not invoke
a complex runtime environment, the execution time should be well below 1s

● Medium / large chip (in HEP community):

 *) The RTL lines count and die size are given only to indicate the chip size and complexity level.

● The TMRG tool is suited for triplicating large chips

in one go.

● The triplication time is almost negligible when

compared to the synthesis time.

PLAG
placement generator

99 Triple Modular Redundancy Generator cern.ch/tmrg

Placement Generator
● Majority voters before (or after) flip-flops cause the P&R tool to place

instances of triplicated flip-flops close together (in order to keep the
routing short).

● Multiple bit upsets can lead to malfunctioning of the triplicated
design:
→ one has to ensure that the triplicated instances of the same
 element are placed far from each each other.

● The PLAG tool:

– can assign registers (or other type of cells) to a specific Instances
Group. A minimum distance is enforced, while leaving Encounter
freedom to optimize the placement,

– operates on a final netlist.

100 Triple Modular Redundancy Generator cern.ch/tmrg

PLAG: Example
plag --lib libs/tcbn65lp.v -o tmrPlace.tcl r2g.v

tmrPlace.tcl:
[..]

[..]

Encounter flow:
[..]

[..]

[example layout]

tmrGroupA tmrGroupB tmrGroupC

Room for

improvement

101 Triple Modular Redundancy Generator cern.ch/tmrg

PLAG: Example

No constraints plag

80 % of triplicated

registers are placed

closer than 10µm

Very congested
routing

tmrGroupA

tmrGroupB

tmrGroupC

102 Triple Modular Redundancy Generator cern.ch/tmrg

Innovus tips & tricks

103 Triple Modular Redundancy Generator cern.ch/tmrg

Similar behaviour can be obtained with the newest version of Innovus
P&N tool using command:

create_inst_space_group groupName
 -inst listOfInstances
 -spacing <value>

Creates space group for instances with a specific vertical-distance constraint.
-inst listOfInstances - specifies all instances that belong to the

same space group by name.
-spacing verticalDistance - specifies the vertical distance, in

 microns, between each specific instance.

SEEG
single event effects generator

104 Triple Modular Redundancy Generator cern.ch/tmrg

SEE simulation
Once the design is implemented one should verify that the design still
works as intended and that the design in immune to SEE.

How can we inject errors?
● Verilog:

force name=value;

release name;

● System Verilog:

$deposit(name, value);

105 Triple Modular Redundancy Generator cern.ch/tmrg

Single Event Effects Generator
SEEG tool streamlines the verification process.

An example usage of the tool for the netlist generated for an example fsm02 can look like:

seeg --lib libs/tcbn65lp.v --output see.v r2g.v

The SEEG generates a file (see.v) which contains several verilog tasks, which can toggle nets
(to simulate SET) or toggle flip-flops state (to simulate SEU) or both:

The approach has been verified with 65nm-HEP CMOS standard cell library and with custom standard cell
library characterized with Liberate (lpGbtxHsLib).

Single Event

Transient

Single Event

Upset

Single Event Event

(SET or SEU)

Flip net

Set or reset

memory element

106 Triple Modular Redundancy Generator cern.ch/tmrg

Single Event Effects Generator

Example usage of SEEG generated tasks:

● Randomize :

– the delay until next event

– the length of the next event

– Randomize the node (wire) to be
affected (see / seu / set)

● Activate “upset” (force)

● Deactivate upset (release)

This is only a template which may
be used as a starting point.

107 Triple Modular Redundancy Generator cern.ch/tmrg

SEEG - example

108 Triple Modular Redundancy Generator cern.ch/tmrg

Single Event

Transient

Single Event

Upset

4 bit synchronous counter with asynchronous reset

Voted

signal

Majority of the outputs is always right

despite of errors on individual outputs

TBG
test bench generator

109 Triple Modular Redundancy Generator cern.ch/tmrg

Test Bench Generator

tbg topModule.v -o topModule_test.v

TBG generates a generic test bench
● RTL description / Netlist
● Non triplicated / triplicated version

(automatic fanout/majority voter insertion for inputs/outputs)
● SDF timing annotation

● SET/SEU/SEE generation

● simple clock/reset generators

110 Triple Modular Redundancy Generator cern.ch/tmrg

DEMO

111 Triple Modular Redundancy Generator cern.ch/tmrg

DEMO
source tmrg/etc/tmrg.sh

tmrg --help
Usage: tmrg [options] fileName

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -v, --verbose More verbose output (use: -v, -vv, -vvv..)
 --doc Open documentation in web browser

[…]

TMRG toolset:
 tmrg - Triple Modular Redundancy Generator
 (triplicates verilog netlist)
 seeg - Single Event Effects Generator
 (helps in the verification of triplicated netlist)
 plag - Placement Generator
 (helps with placement of triplicated circuit)
 tbg - Testbench Generator
 (creates template for the testbench)

112 Triple Modular Redundancy Generator cern.ch/tmrg

DFF example | RTL

cat counter.v

module counter(
 input d,
 input clk,
 input rst,
 output reg [7:0] q
);
 always @(posedge clk or posedge rst)
 if (rst)
 q<=0;
 else
 q<=q+1;
endmodule

tmrg counter.v

ls -l
counter.v counterTMR.v counterTMR.sdc

UNIX-like convention: no output → no errors!

113 Triple Modular Redundancy Generator cern.ch/tmrg

no tmrg directives → default triplicate

Is it what we want ??

DFF example | Verbose
tmrg -v counter.v
[INFO] Loading file 'counter.v'
[INFO]
[INFO] Elaborating counter.v
[INFO] Module counter (counter.v)
[INFO] Port mode : ANSI
[INFO]
[INFO] Checking the design hierarchy
[INFO] [counter]
[INFO]
[INFO] Applying constrains
[INFO] Module counter
[INFO] | tmrErrOut : False (configGlobal:False)
[INFO] | net rst : True (configGlobalDefault:True)
[INFO] | net q : True (configGlobalDefault:True)
[INFO] | net clk40M : True (configGlobalDefault:True)
[INFO] | net d : True (configGlobalDefault:True)
[INFO]
[INFO] Applying constrains by name
[INFO] Module counter
[INFO]
[INFO] Module:counter
[INFO] +##+######################+############+
[INFO] | Nets | range | tmr |
[INFO] +##+######################+############+
[INFO] | rst | | True |
[INFO] | q | [7:0] | True |
[INFO] | clk40M | | True |
[INFO] | d | | True |
[INFO] +--+----------------------+------------+
[INFO] Triplciation starts here
[INFO]
[INFO] Triplicating file counter.v
[INFO] Generating SDC constraints file ./counterTMR.sdc

Going verbose “-v”

Going even more

verbose “-vv”

114 Triple Modular Redundancy Generator cern.ch/tmrg

DFF example | Triplication
cat counterTMR.v
module counterTMR(
 input dA,
 input dB,
 input dC,
 input clk40MA,
 input clk40MB,
 input clk40MC,
 input rstA,
 input rstB,
 input rstC,
 output reg [7:0] qA,
 output reg [7:0] qB,
 output reg [7:0] qC
);

always @(posedge clk40MA or posedge rstA)
 if (rstA)
 qA <= 0;
 else
 qA <= qA+1;
always @(posedge clk40MB or posedge rstB)
 if (rstB)
 qB <= 0;
 else
 qB <= qB+1;
always @(posedge clk40MC or posedge rstC)
 if (rstC)
 qC <= 0;
 else
 qC <= qC+1;
endmodule

115 Triple Modular Redundancy Generator cern.ch/tmrg

Is this type of

triplication safe in

this case?

DFF example | Place
plag --lib /homedir/skulis/tmrg/trunk/libs/tcbn65lp.v \
 dffTMR_rc/r2g.v

cat tmrPlace.tcl

addInstToInstGroup tmrGroupA {dffTMR/qA_reg}
addInstToInstGroup tmrGroupB {dffTMR/qB_reg}
addInstToInstGroup tmrGroupC {dffTMR/qC_reg}

In the encounter flow:

[..]
createInstGroup tmrGroupA -region 0 0 10 10
createInstGroup tmrGroupB -region 10 0 20 10
createInstGroup tmrGroupB -region 20 0 30 10
source tmrPlace.tcl
[..]

use -v for verbose

output

116 Triple Modular Redundancy Generator cern.ch/tmrg

DFF example | Verification
seeg --lib /homedir/skulis/tmrg/trunk/libs/tcbn65lp.v \
 r2g.v
cat see.v
task set_force_net;
 input wireid;
 integer wireid;
 begin
 case (wireid)
 0 : force DUT.qC_reg.Q = ~DUT.qC_reg.Q;
 1 : force DUT.dVoterA.Fp9999955A.ZN = ~DUT.dVoterA.Fp9999955A.ZN;
 2 : force DUT.dVoterA.p214748365A.ZN = ~DUT.dVoterA.p214748365A.ZN;
 3 : force DUT.dVoterC.Fp9999955A.ZN = ~DUT.dVoterC.Fp9999955A.ZN;
 4 : force DUT.dVoterC.p214748365A.ZN = ~DUT.dVoterC.p214748365A.ZN;
 5 : force DUT.dVoterB.Fp9999955A.ZN = ~DUT.dVoterB.Fp9999955A.ZN;
 6 : force DUT.dVoterB.p214748365A.ZN = ~DUT.dVoterB.p214748365A.ZN;
 7 : force DUT.qB_reg.Q = ~DUT.qB_reg.Q;
 8 : force DUT.qA_reg.Q = ~DUT.qA_reg.Q;
 endcase
 end
endtask

task set_release_net;
task set_display_net;
task set_max_net;

task seu_force_net;
task seu_release_net;
task seu_display_net;
task seu_max_net;

task see_force_net;
task see_release_net;
task see_display_net;
task see_max_net;

use -v for verbose

output
SET

SEU

SEE

117 Triple Modular Redundancy Generator cern.ch/tmrg

DFF example | Verification
tbg counter.v -o counter_test.v
cat counter_test.v
`timescale 1 ps / 1 ps
[..]

module counter_test;

// Input/Output section
 reg clk;
 wire [7:0] q;
 reg rst;

// Device Under Test section

`ifdef TMR
 [...]
 counterTMR DUT (
 .clkA(clkA),
 .clkB(clkB),
 .clkC(clkC),
 .qA(qA),
 .qB(qB),
 .qC(qC),
 .rstA(rstA),
 .rstB(rstB),
 .rstC(rstC)
);
`else
 counter DUT (
 .clk(clk),
 .q(q),
 .rst(rst)
);
`endif

118 Triple Modular Redundancy Generator cern.ch/tmrg

SEE Enabled

This counter is

not robust!
Self fixing

mechanism is

necessary

DEMO Summary

Conclusions:
- TMRG tool chain is easy to use
- TMRG flow can be fully automatized
- TMRG tool should be used with caution

119 Triple Modular Redundancy Generator cern.ch/tmrg

Current Limitations
● The TMRG supports only a subset of the Verilog language

(sophisticated constructions may lead to incorrect results).

● The tool is not able to handle all possible coding styles:

– Concatenation of triplicated and not triplicated variables on
the left hand side of an assignment

– unnamed connections for the module instantiation
● System Verilog syntax is not supported

● Parser error messages are not very verbose

● Some constants are hard-coded in the source code
(like A,B,C postfixes for triplicated signals names)

● Higher order replication (5, 7, 9, ...) is not supported

120 Triple Modular Redundancy Generator cern.ch/tmrg

Still maturing but a very useful tool!

121 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG

Summary

Single Event Effects mitigation techniques:

● Technology level (minimizing sensitivity depth)

● Cell level (increasing critical charge, information stored on
multiple nodes)

● System level:

– Encoding (Hamming, Reed – Solomon, …)

– Triple Modular Redundancy
● Registers only
● Registers and clocks
● Full triplication

122 Triple Modular Redundancy Generator cern.ch/tmrg

Summary

● TMRG tool chain assists user along the design process of
electronics resistant to Single Event Effects
– It is compatible with the typical ASIC design flows used in the HEP community

– It does not over constraint the user's coding style

– It allows to obtain various flavors of TMR (registers only, full triplication, …)

– it assists in the physical implementation stage (synthesis, P&R)

– It assists in the verification process (generation of SEE)

– It can be run in batch mode (fully automatic flow)

● To get started check the documentation at : cern.ch/tmrg

● Development still continues, your feedback is essential!

123 Triple Modular Redundancy Generator cern.ch/tmrg

Thank you very much for your attention!

questions ?

suggestions ?

remarks ?

requests ?

Please visit : cern.ch/tmrg

124 Triple Modular Redundancy Generator cern.ch/tmrg

Further reading
● Single event effects in static and dynamic registers in a 0.25 µm CMOS technology

F. Faccio; K. Kloukinas; A. Marchioro; T. Calin; J. Cosculluela; M. Nicolaidis; R. Velazco
IEEE Transactions on Nuclear Science, Year: 1999, Volume: 46, Issue: 6

● An SEU-Robust Configurable Logic Block for the Implementation of a Radiation-Tolerant FPGA
S. Bonacini; F. Faccio; K. Kloukinas; A. Marchioro
IEEE Transactions on Nuclear Science, Year: 2006, Volume: 53, Issue: 6

● Computational method to estimate Single Event Upset rates in an accelerator environment
M Huhtinen and F Faccio
NIMA, Year: 2000, Volume:450, Issue:1

● Characterization of a commercial 65 nm CMOS technology for SLHC applications
S Bonacini, P Valerio, R Avramidou, R Ballabriga, F Faccio, K Kloukinas and A Marchioro
Journal of Instrumentation, Volume 7, January 2012

● Single-event upset sensitivity of latches in a 90nm dual and triple well CMOS technology
L Pierobon, S Bonacini, F Faccio and A Marchioro
Journal of Instrumentation, Volume 6, December 2011

● Design and characterization of an SEU-robust register in 130nm CMOS for application in HEP ASICs
S Bonaci
Journal of Instrumentation, Volume 5, November 2010

125 Triple Modular Redundancy Generator cern.ch/tmrg

Backup slides

126 Triple Modular Redundancy Generator cern.ch/tmrg

Single Event Effects

Single-event effect (SEE) is a phenomena triggered by a charged
particle passing through an electronic device. Traversing particle ionizes
the matter producing electron-holes pairs. The amount of charge being
generated depends on particle type, particle energy, incident angle,
material. The charge can be then collected by a drain/source diffusion
and can modify its voltage, changing its logical value (from zero to one
or vice versa).

Traditionally we distinguish two types of upsets:

● Single-event transient (SET) is a phenomena in which an error
happens in a combinatorial logic. It appears as a short glitch on a
net. The proper value is restored within short time (~ns). Importance
of SET increases with increasing clock frequency when the duration
of SET becomes comparable with a clock period.

● Single-event upsets (SEU) are errors induced in memory cells (like
flip-flop). In contradiction to SET, the value of the memory cell does
not recover after SEU.

127/136 Triple Modular Redundancy Generator cern.ch/tmrg

Tripple Module Redundancy

There have been several techniques proposed in order to protect the
circuit against events caused by the ionizing particles. Virtually all
techniques relay on a data redundancy. It is assumed, that if the bit of
information is stored in several places (nodes) the information can be
properly reconstructed even if some of these places (nodes) get
disturbed. There are some circuit techniques, based on hardening
standard cells while the other techniques address the problem at the
system level, by utilizing error-correcting coding (ECC), temporal
redundancy, or Tripple Module Redundancy.

Tripple Module Redundancy (TMR) concept was originally developed by
Von Neumann, with the main purpose of enhancing reliability of electronic
circuits. This concept was later applied in microelectronics for protection
against ionizing particles.

The purpose of TMRG tool is to automatize process

of triplicating digital circuits.

128/136 Triple Modular Redundancy Generator cern.ch/tmrg

Accessing individual signals from a triplicated bus

In some very spetial cases you may want to access signals after the
triplication individually. Imagine that you are designing a reset circuit.
You want to have a

● Power-on reset (POR) block
● and an external reset signal.

As you do not want that SET in POR block resets your chip, you may
decide to triplicate the block. For practical reasons, you still want to
keep only one external reset pin.

There is not magic so far.

129/136 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG

Accessing individual signals from a triplicated bus

If you decided that you would like to able to check during normal
operation what is the status of the POR output, the straight forward
way of doing that would be:

You may see that ‘porStatus’’ signal got triplicated which is of course
what we want. Lets think if this is what you really want. If you connect
it to some kind of digital bus, most likely you will have some voting on
the way, so you will not have an information about individual signals.

130/136 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG

How to constrain the design ?

A brief summary of all constrains, ways of specifying it, and priorities is shown in Table below.

131/136 Triple Modular Redundancy Generator cern.ch/tmrg

How to constrains the design (debugging) ?

As there are several ways of specifying constrains and one constrain can
be overwritten by another, there is mechanism which can ensure the
designer that all his intentions are interpreted properly.

Lets consider the comb06 module from the above example. Lets write a
configuration files comb06.cnf:

When you run TMRG with additional options and constrains as shown below:

132/136 Triple Modular Redundancy Generator cern.ch/tmrg

How to constrains the design (debugging) ?

The detailed log of what is being done can
be generated (-v option)

The table at the end of the listing
summarizes all discovered signals and
applied constrains.

Step by step process of applying constrains
can be used to understand at which point
something went wrong:

● Used configuration files
● Command line constrains
● Constrains evaluation for given nets

133/136 Triple Modular Redundancy Generator cern.ch/tmrg

Summary table

Accessing individual signals from a triplicated bus

In order to solve the problem, you have to “code” some triplication manually. If you
declare a wire with a special name and with a special assignment (like bellow) you
gain access to the signal after triplication:

This convention ensures that you can still simulate and synthesize you original
design. TMRG will convert this declarations during elaboration process to the desired
ones. Lets see how we can use this in our resetBlock example.

As you can see, we ended up with triplicated bus (9 signals!).

134/136 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG
vector!

Accessing individual signals from a triplicated bus

In the previous example it was shown how to fanout a signal in order to
access sub-signals in a triplicated signal. Now let us consider opposite
situation, how to generate triplicated signal from arbitrary combination of
other signals.

To make example easier to understand, lets take real-life problem: we
want to make a clock gating circuit. A simple implementation with only one
gating signal may look like:

No magic so far.

135/136 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG

Accessing individual signals from a triplicated bus

If we want to be able to gate individual sub-signals in a triplicate clock,
we have to use similar trick as in the resetBlock.

136/136 Triple Modular Redundancy Generator cern.ch/tmrg

TMRG
vector!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

