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SEU sensitivity of a device
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SEU sensitivity of a device
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SEU sensitivity of a device
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SEU sensitivity of a device
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SEU sensitivity of a device
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SEE mitigation techniques
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SEE mitigation techniques
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SEE mitigation techniques
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Cell design  -dice
● Dual interlock cell
● Pros:

– Protects against hit on one node
● Drawbacks:

– Writing to the cell required access to 2 nodes
– Recovery time needed after SEU (limitation for high freq circuits)

● Output glitch
● Risign clock during recovyer can store wrong data

– Charge collection by multiple nodes can lead to SEU anyway → results 
bonacini
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tmr
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tmr
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tmrTMR: how     to triplicate FSM
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tmr
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Triple Modular Redundancy Generator



  

TMRG : motivation

Requirements, the tool should:

- be compatible with the ASIC design flows used in the HEP community  
  (Verilog RTL, Cadence tool chain)

- not over constraint the user's coding style     
  (the source Verilog must be synthesizable)

- allow to obtain various flavors of TMR (registers only, full triplication, …)

- assists in the physical implementation stage (synthesis, P&R)

- assists the designer in the verification process (generation of SEE)

- it can be run in batch mode (fully automatic flow)

 

The purpose of the TMRG tool set is to automatize 

the process of triplicating digital circuits.
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TMRG : project status

● Project started: Jan 2015

● Project size: >13000 lines of code

● Documentation size: 69 pages (pdf&html)

● Active user base: >7 designers

● “Open source”, hosted in CERN git repository (700+ commits)
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Initial

development

Minor bug fixes

New features 

and new syntax 

support



  

Projects using TMRG

● Chips already submitted and tested:

– GBLD10+ – 10 Gbps laser driver

– LDQ10 – Quad array laser driver (4x10 Gbps)

– VLAD – Quad array laser driver (4x10 Gbps)

– DRAD – Digital radiation test chip

– ePLL-CDR – PLL/CDR circuit macro block

● (relatively big) Chips to be submitted in following months

– lpGBT  – 10 Gbps transceiver 

– MPA – Macro Pixel ASIC for CMS tracker

– SSA – Strip Senor ASIC for CMS tracker

– SALT – Silicon ASIC for LHCb Tracking
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Before starting ...

The TMRG tool IS NOT a single button solution which will make your 

CHIP design safe from single event upsets. 

You, as a designer, have to know which parts of your circuits should (have to) 

be protected. The TMRG tool will save you the time needed for copy-pasting 

your code and will minimize probability that you will forget to change some 

postfix in your triplicated variable names. It will also simplify the physical 

implementation and verification process by providing some routines.

The TMRG is open source, however, it CAN NOT be made publicly available. The 

tool can be considered as dual-use item as it can be used to produce electronic 

circuits which are resistant to radiation.

If you find any problem with the tool chain please report it! 

Only by having your feedback we will be able to improve the tool chain!
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Digital design flow
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Digital design flow

Toolset:

● tmrg – triplicates the Verilog 
code and generates 
synthesis constrains (for 
Design Compiler)

● tbg – generates generic test 
bench template (with 
/without TMR, SEE injection, 
post synthesis, post PNR)

● plag – generates placement 
directives (for Encounter)

● seeg – generates Single 
Event Effects stimulus to be 
used for transient 
simulations
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TMRG
triple modular redundancy generator
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Constraining the design
The TMRG tool:

● lets the designer decide which blocks and signals are to be triplicated by 
using TMRG directives (placed in Verilog code):

● automatizes the “conversion” between triplicated and not triplicated signals:
– if a non triplicated signal is connected to a triplicated signal a passive 

fanout is added

– if a triplicated signal is connected to a non triplicated signal a majority 
voter is added

*)
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*) see full TMR option later 



  

TMRG Example1

Lets consider simple combinatorial module:

The module models an inverter, which contains only one input and one output.
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TMRG Example1: Triplicating everything

TMRG

TMRG directive

TMRG
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TMRG Example1: Logic and output triplication

TMRG

fanout for in net

TMRG

Non triplicated signal 

connected to 

triplicated signal
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TMRG Example1: Input and logic triplication

TMRG

TMRG

voter for comb 

logic net

Triplicated signal 

connected to 

non triplicated signal
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TMRG Example1: Logic triplication

TMRG

Triplicated signal 

connected to 

non triplicated signal

TMRG

Non triplicated signal 

connected to 

triplicated signal
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TMRG Example1: Input and output triplication

TMRG

TMRG
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TMRG Example: Summary

TMRG tool behavior can be controlled by TMRG constrains

(the same)

Verilog RTL

TMRG
(with constraints)
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Majority voter, fanout ?

common/voter.v common/fanout.v

Some definitions:

If needed this definitions are added to the output file, 
can also be replaced by user defined modules.
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FSM Example: triplication without voting

TMRG

TMRG

comb logic

We know that this is 

not what we want ...flip flop

If an error occurs in one branch, it will propagate along the branch. If there is no repair mechanism, after the first error the effective cross 
section is doubled with respect to the non triplicated circuit. In order to eliminate this problem, a voted feedback is needed!
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FSM Example: triplicating only the register

TMRG

TMRG

Triplicate state 

Majority Voter  
added automatically 

(conversion from triplicated 
to non triplicated signal)
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FSM Example: triplicating the register and clock skew

TMRG

TMRG
Triplicate state 

Triplicate clk

Majority Voter  
added automatically 

(conversion from triplicated 
to non triplicated signal)
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Introducing full TMR

To generate full TMR (3 interconnected majority voters) a net 
declaration with a specific name (Voted postfix) has to be used:

This syntax ensures that non triplicated Verilog code can be 
simulated and/or synthesized.
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Full TMR: Voting triplicated signals

TMRG

TMRG

Insert 3 voters 
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Full TMR: logic triplication and voting

TMRG

TMRG

Insert 3 voters for input signals
Insert 3 voters for output signals

Do you want to have voter before and after the logic? Probably not … but you CAN. 
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FSM Example: triplication and voting

comb logic

flip flop

TMRG

TMRG

Insert 3 voters 

statenextStateVoted

nextState
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Module instantiations

General concepts related to module instantiation triplication:

● Only named connections are supported for module instantiation!

● All modules must be known at the time of triplication. 

● If a module is not be triplicated internally (e.g. library cell, analog 
macro cell) one has to add directive do_not_touch in the module 
body.

● For all other modules (not from library and not having 
do_not_touch constrain):

– triplication is always done inside the module,

– a new (triplicated) module has a TMR postfix appended to the 
name,

– I/O names may change.
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Triplicating a fixed macro cell
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TMRG

TMRG



  

Not triplicating a fixed macro cell
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Do not triplicate logic01 instance

TMRG

TMRG

Majority Voter and fanout
added automatically 

(conversion between triplicated and 
non triplicated signals)



  

Triplicating user’s modules
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When the module being instantiated is a subject of triplication, only connections
are modified and voters and fanouts are added if necessary.

TMRG

TMRG



  

Triplication brings new features - tmrError
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● It may be desirable to know if one of the triplicated signals is different from 
the other two (whether an single event upset has happened or not)

● The TMRG tool always generates:

– tmrError output associated with each voter. 
For a signal mem the voter can look like:

– Combination (OR) of all error signals 
inside given module

● To make use of the signal (particular or global) it is enough to make a declaration:

This definition will be removed by the TMRG tool and the wire will be connected 
directly to the error output of the voter. By declaring tmrError the designer gains 
access to the signal and can implement the required functionality. Moreover, 
assigning zero value ensures that the non triplicated circuit is not affected and can 
be simulated.

● If user does not use the tmrError functionality it will be optimized out by the synthesizer



  

tmrError Example

93/136 Triple Modular Redundancy Generator  cern.ch/tmrg

Assigning zero value to tmrError 
ensures that the non triplicated circuit is 
not affected and can be simulated.

TMRG

TMRG

[...]

1

2

3

TmrError can be used to implement SEU counter!

Definition for tmrError



  

Other features

● Accessing individual signals from a triplicated bus 
(e.g. power on reset monitoring)

● Generating a triplicated bus from other signals
(e.g. clock gating for production testing)

● Generating identical slices of logic (timing critical logic)
(e.g. feedback divider for PLL)

● Specify majority voter and fanout cells on per module basis 
(e.g. different voter for clock multiplexer)

● Integrated with SVN / CLIOSOFT sos version control systems
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How to constrains the design ?

Constrains do not have to be places in the source code directly. Constrains can be 
● loaded from a configuration file 

– The configuration file uses standard INI file format. It is a simple text file with a basic structure 
composed of sections, properties, and values. An example file may look like:

– To load a configuration file, you have to specify its name as a command line argument:

● provided as a command line arguments. This approach is not very effective for constraining the 
whole project, but may be really handy in the initial phase. A possible constrains are shown bellow:
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Preserving TMR code during synthesis

Most of the code generated by TMRG tool is redundant 
 → synthesizer will want to remove it (undesirable behavior!) 

The TMRG generates a set of constrains for you which will force Design Compiler not 
to discard the redundant logic:

As a result, a file comb06TMR.sdc will be generated. The file is a SDC file which can 
be loaded from the RC. 

Constrains may affect 

the logic optimization 
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RTL Compiler / Genus tips & tricks

Problem: how to make sure that the synthesis tool does not remove a specific cell?

Example Verilog code:

SDC constrain file:

● Any of INVD1 instances will not be touched!

RC/Genus script: 

● Specific instance will be preserved!
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TMRG performance
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● Small projects/files - the TMRG tool should be usually very fast. As the TMRG does not invoke 
a complex runtime environment, the execution time should be well below 1s

● Medium / large chip (in HEP community):

             *) The RTL lines count and die size are given only to indicate the chip size and complexity level.

● The TMRG tool is suited for triplicating large chips 

in one go. 

● The triplication time is almost negligible when 

compared to the synthesis time.



  

PLAG
placement generator
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Placement Generator
● Majority voters before (or after) flip-flops cause the P&R tool to place 

instances of triplicated flip-flops close together (in order to keep the 
routing short).

● Multiple bit upsets can lead to malfunctioning of the triplicated 
design: 
→ one has to ensure that the triplicated instances of the same
     element are placed far from each each other. 

● The  PLAG tool:

– can assign registers (or other type of cells) to a specific Instances 
Group. A minimum distance is enforced, while leaving Encounter 
freedom to optimize the placement,

– operates on a final netlist.
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PLAG: Example
# plag --lib libs/tcbn65lp.v -o tmrPlace.tcl r2g.v

tmrPlace.tcl:
[..]

[..]

Encounter flow:
[..]

[..]

[example layout]

tmrGroupA tmrGroupB tmrGroupC

Room for 

improvement
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PLAG: Example

No constraints plag

80 % of triplicated 

registers are placed 

closer than 10µm

Very congested 
routing

tmrGroupA

tmrGroupB

tmrGroupC
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Innovus tips & tricks
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Similar behaviour can be obtained with the newest version of Innovus 
P&N tool using command:

create_inst_space_group groupName 
                        -inst listOfInstances
                        -spacing <value>  

Creates space group for instances with a specific vertical-distance constraint.
-inst  listOfInstances -  specifies all instances that belong to the

same space group by name.
-spacing verticalDistance - specifies the vertical distance, in

 microns, between each specific instance.



  

SEEG
single event effects generator
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SEE simulation
Once the design is implemented one should verify that the design still 
works as intended and that the design in immune to SEE. 

How can we inject errors?
● Verilog:

force name=value; 

release name;

● System Verilog:

$deposit(name, value);
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Single Event Effects Generator
SEEG tool streamlines the verification process.

An example usage of the tool for the netlist generated for an example fsm02 can look like:

# seeg --lib libs/tcbn65lp.v --output see.v r2g.v

The SEEG generates a file (see.v) which contains several verilog tasks, which can toggle nets 
(to simulate SET) or toggle flip-flops state (to simulate SEU) or both:

The approach has been verified with 65nm-HEP CMOS standard cell library and with custom standard cell 
library characterized with Liberate (lpGbtxHsLib). 

Single Event 

Transient

Single Event 

Upset

Single Event Event 

(SET or SEU)

Flip net

Set or reset 

memory element
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Single Event Effects Generator

Example usage of SEEG generated tasks:

● Randomize :

– the delay until next event

– the length of the next event

– Randomize the node (wire) to be 
affected (see / seu / set)

● Activate “upset” (force)

● Deactivate upset (release)

This is only a template which may 
be used as a starting point. 
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SEEG - example
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Single Event 

Transient

Single Event 

Upset

4 bit synchronous counter with asynchronous reset

Voted

signal

Majority of the outputs is always right 

despite of errors on individual outputs



  

TBG
test bench generator
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Test Bench Generator

# tbg topModule.v -o topModule_test.v

TBG generates a generic test bench
● RTL description / Netlist
● Non triplicated / triplicated version 

(automatic fanout/majority voter insertion for inputs/outputs)
● SDF timing annotation

● SET/SEU/SEE generation

● simple clock/reset generators
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DEMO
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DEMO
# source tmrg/etc/tmrg.sh

# tmrg --help
Usage: tmrg [options] fileName

Options:
  --version             show program's version number and exit
  -h, --help            show this help message and exit
  -v, --verbose         More verbose output (use: -v, -vv, -vvv..)
  --doc                 Open documentation in web browser

[…]

TMRG toolset:
  tmrg - Triple Modular Redundancy Generator
         (triplicates verilog netlist)
  seeg - Single Event Effects Generator
         (helps in the verification of triplicated netlist)
  plag - Placement Generator
         (helps with placement of triplicated circuit)
  tbg  - Testbench Generator
         (creates template for the testbench)

112 Triple Modular Redundancy Generator  cern.ch/tmrg



  

DFF example | RTL

# cat counter.v

module counter(
  input d,
  input clk,
  input rst,
  output reg [7:0] q
);
  always @(posedge clk or posedge rst)
    if (rst)
      q<=0;
    else
      q<=q+1;
endmodule

# tmrg counter.v

# ls -l
counter.v counterTMR.v counterTMR.sdc

 

UNIX-like convention: no output → no errors!
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no tmrg directives → default triplicate

Is it what we want ??



  

DFF example | Verbose
# tmrg -v counter.v
[INFO   ] Loading file 'counter.v'
[INFO   ] 
[INFO   ] Elaborating counter.v
[INFO   ] Module counter (counter.v)
[INFO   ] Port mode : ANSI
[INFO   ] 
[INFO   ] Checking the design hierarchy
[INFO   ] [counter]
[INFO   ] 
[INFO   ] Applying constrains
[INFO   ] Module counter
[INFO   ]  | tmrErrOut : False (configGlobal:False)
[INFO   ]  | net rst : True (configGlobalDefault:True)
[INFO   ]  | net q : True (configGlobalDefault:True)
[INFO   ]  | net clk40M : True (configGlobalDefault:True)
[INFO   ]  | net d : True (configGlobalDefault:True)
[INFO   ] 
[INFO   ] Applying constrains by name
[INFO   ] Module counter
[INFO   ] 
[INFO   ] Module:counter
[INFO   ] +####################################################+######################+############+
[INFO   ] | Nets                                               |        range         |    tmr     |
[INFO   ] +####################################################+######################+############+
[INFO   ] | rst                                                |                      |    True    |
[INFO   ] | q                                                  |        [7:0]         |    True    |
[INFO   ] | clk40M                                             |                      |    True    |
[INFO   ] | d                                                  |                      |    True    |
[INFO   ] +----------------------------------------------------+----------------------+------------+
[INFO   ] Triplciation starts here
[INFO   ] 
[INFO   ] Triplicating file counter.v
[INFO   ] Generating SDC constraints file ./counterTMR.sdc

Going verbose “-v”

Going even more 

verbose “-vv”

114 Triple Modular Redundancy Generator  cern.ch/tmrg



  

DFF example | Triplication
# cat counterTMR.v 
module counterTMR(
  input  dA,
  input  dB,
  input  dC,
  input  clk40MA,
  input  clk40MB,
  input  clk40MC,
  input  rstA,
  input  rstB,
  input  rstC,
  output reg [7:0] qA,
  output reg [7:0] qB,
  output reg [7:0] qC
);

always @(posedge clk40MA or posedge rstA)
  if (rstA)
    qA <= 0;
  else
    qA <= qA+1;
always @(posedge clk40MB or posedge rstB)
  if (rstB)
    qB <= 0;
  else
    qB <= qB+1;
always @(posedge clk40MC or posedge rstC)
  if (rstC)
    qC <= 0;
  else
    qC <= qC+1;
endmodule
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Is this type of 

triplication safe in 

this case?



  

DFF example | Place
# plag --lib /homedir/skulis/tmrg/trunk/libs/tcbn65lp.v  \
       dffTMR_rc/r2g.v

# cat  tmrPlace.tcl

addInstToInstGroup tmrGroupA {dffTMR/qA_reg}
addInstToInstGroup tmrGroupB {dffTMR/qB_reg}
addInstToInstGroup tmrGroupC {dffTMR/qC_reg}

In the encounter flow:

[..]
createInstGroup tmrGroupA -region 0 0 10 10
createInstGroup tmrGroupB -region 10 0 20 10
createInstGroup tmrGroupB -region 20 0 30 10
source tmrPlace.tcl
[..]

use -v for verbose 

output
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DFF example | Verification
# seeg --lib /homedir/skulis/tmrg/trunk/libs/tcbn65lp.v  \
       r2g.v
# cat  see.v
task set_force_net;
  input wireid;
  integer wireid;
  begin
    case (wireid)
       0 : force DUT.qC_reg.Q = ~DUT.qC_reg.Q;
       1 : force DUT.dVoterA.Fp9999955A.ZN = ~DUT.dVoterA.Fp9999955A.ZN;
       2 : force DUT.dVoterA.p214748365A.ZN = ~DUT.dVoterA.p214748365A.ZN;
       3 : force DUT.dVoterC.Fp9999955A.ZN = ~DUT.dVoterC.Fp9999955A.ZN;
       4 : force DUT.dVoterC.p214748365A.ZN = ~DUT.dVoterC.p214748365A.ZN;
       5 : force DUT.dVoterB.Fp9999955A.ZN = ~DUT.dVoterB.Fp9999955A.ZN;
       6 : force DUT.dVoterB.p214748365A.ZN = ~DUT.dVoterB.p214748365A.ZN;
       7 : force DUT.qB_reg.Q = ~DUT.qB_reg.Q;
       8 : force DUT.qA_reg.Q = ~DUT.qA_reg.Q;
    endcase
  end
endtask

task set_release_net;
task set_display_net;
task set_max_net;

task seu_force_net;
task seu_release_net;
task seu_display_net;
task seu_max_net;

task see_force_net;
task see_release_net;
task see_display_net;
task see_max_net;

use -v for verbose 

output
SET

SEU

SEE
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DFF example | Verification
# tbg counter.v -o counter_test.v
# cat counter_test.v
`timescale 1 ps / 1 ps
[..]

module counter_test;

// Input/Output section 
  reg  clk;
  wire [7:0] q;
  reg  rst;

// Device Under Test section

`ifdef TMR
  [...]
  counterTMR DUT (
    .clkA(clkA),
    .clkB(clkB),
    .clkC(clkC),
    .qA(qA),
    .qB(qB),
    .qC(qC),
    .rstA(rstA),
    .rstB(rstB),
    .rstC(rstC)
  );
`else
  counter DUT (
    .clk(clk),
    .q(q),
    .rst(rst)
  );
`endif
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DEMO Summary

Conclusions:
- TMRG tool chain is easy to use
- TMRG flow can be fully automatized
- TMRG tool should be used with caution 
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Current Limitations 
● The TMRG supports only a subset of the Verilog language 

(sophisticated constructions may lead to incorrect results).

● The tool is not able to handle all possible coding styles:

– Concatenation of triplicated and not triplicated variables on 
the left hand side of an assignment

– unnamed connections for the module instantiation 
● System Verilog syntax is not supported 

● Parser error messages are not very verbose 

● Some constants are hard-coded in the source code 
(like A,B,C postfixes for triplicated signals names)

● Higher order replication (5, 7, 9, ...) is not supported
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Still maturing but a very useful tool!
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Summary

Single Event Effects mitigation techniques:

● Technology level (minimizing sensitivity depth)

● Cell level (increasing critical charge, information stored on 
multiple nodes)

● System level:

– Encoding (Hamming, Reed – Solomon, …)

– Triple Modular Redundancy
● Registers only
● Registers and clocks
● Full triplication 
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Summary

● TMRG tool chain assists user along the design process of 
electronics resistant to Single Event Effects
– It is compatible with the typical ASIC design flows used in the HEP community

– It does not over constraint the user's coding style 

– It allows to obtain various flavors of TMR (registers only, full triplication, …)

– it assists in the physical implementation stage (synthesis, P&R)

– It assists in the verification process (generation of SEE)

– It can be run in batch mode (fully automatic flow)

● To get started check the documentation at : cern.ch/tmrg

● Development still continues, your feedback is essential! 
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Thank you very much for your attention!

questions ?

suggestions ?

remarks ?

requests ?

Please visit : cern.ch/tmrg
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Further reading
● Single event effects in static and dynamic registers in a 0.25 µm CMOS technology

F. Faccio; K. Kloukinas; A. Marchioro; T. Calin; J. Cosculluela; M. Nicolaidis; R. Velazco
IEEE Transactions on Nuclear Science, Year: 1999, Volume: 46, Issue: 6

● An SEU-Robust Configurable Logic Block for the Implementation of a Radiation-Tolerant FPGA
S. Bonacini; F. Faccio; K. Kloukinas; A. Marchioro
IEEE Transactions on Nuclear Science, Year: 2006, Volume: 53, Issue: 6

● Computational method to estimate Single Event Upset rates in an accelerator environment 
M Huhtinen and F Faccio
NIMA, Year: 2000, Volume:450, Issue:1

● Characterization of a commercial 65 nm CMOS technology for SLHC applications
S Bonacini, P Valerio, R Avramidou, R Ballabriga, F Faccio, K Kloukinas and A Marchioro
Journal of Instrumentation, Volume 7, January 2012

● Single-event upset sensitivity of latches in a 90nm dual and triple well CMOS technology
L Pierobon, S Bonacini, F Faccio and A Marchioro
Journal of Instrumentation, Volume 6, December 2011

● Design and characterization of an SEU-robust register in 130nm CMOS for application in HEP ASICs
S Bonaci
Journal of Instrumentation, Volume 5, November 2010
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Backup slides
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Single Event Effects

Single-event effect (SEE) is a phenomena triggered by a charged 
particle passing through an electronic device. Traversing particle ionizes 
the matter producing electron-holes pairs. The amount of charge being 
generated depends on particle type, particle energy, incident angle, 
material. The charge can be then collected by a drain/source diffusion 
and can modify its voltage, changing its logical value (from zero to one 
or vice versa). 

Traditionally we distinguish two types of upsets: 

● Single-event transient (SET) is a phenomena in which an error 
happens in a combinatorial logic. It appears as a short glitch on a 
net. The proper value is restored within short time (~ns). Importance 
of SET increases with increasing clock frequency when the duration 
of SET becomes comparable with a clock period.

● Single-event upsets (SEU) are errors induced in memory cells (like 
flip-flop). In contradiction to SET, the value of the memory cell does 
not recover after SEU.
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Tripple Module Redundancy

There have been several techniques proposed in order to protect the 
circuit against events caused by the ionizing particles. Virtually all 
techniques relay on a data redundancy. It is assumed, that if the bit of 
information is stored in several places (nodes) the information can be 
properly reconstructed even if some of these places (nodes) get 
disturbed. There are some circuit techniques, based on hardening 
standard cells while the other techniques address the problem at the 
system level, by utilizing error-correcting coding (ECC), temporal 
redundancy, or Tripple Module Redundancy.

Tripple Module Redundancy (TMR) concept was originally developed by 
Von Neumann, with the main purpose of enhancing reliability of electronic 
circuits. This concept was later applied in microelectronics for protection 
against ionizing particles. 

The purpose of TMRG tool is to automatize process 

of triplicating digital circuits.
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Accessing individual signals from a triplicated bus

In some very spetial cases you may want to access signals after the 
triplication individually. Imagine that you are designing a reset circuit. 
You want to have a

● Power-on reset (POR) block 
● and an external reset signal. 

As you do not want that SET in POR block resets your chip, you may 
decide to triplicate the block. For practical reasons, you still want to 
keep only one external reset pin. 

There is not magic so far.
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Accessing individual signals from a triplicated bus

If you decided that you would like to able to check during normal 
operation what is the status of the POR output, the straight forward 
way of doing that would be:

You may see that ‘porStatus’’ signal got triplicated which is of course 
what we want. Lets think if this is what you really want. If you connect 
it to some kind of digital bus, most likely you will have some voting on 
the way, so you will not have an information about individual signals.
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How to constrain the design ?

A brief summary of all constrains, ways of specifying it, and priorities is shown in Table below.
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How to constrains the design (debugging) ?

As there are several ways of specifying constrains and one constrain can 
be overwritten by another, there is mechanism which can ensure the 
designer that all his intentions are interpreted properly. 

Lets consider the comb06 module from the above example. Lets write a 
configuration files comb06.cnf:

When you run TMRG with additional options and constrains as shown below:
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How to constrains the design (debugging) ?

The detailed log of what is being done can 
be generated (-v option) 

The table  at the end of the listing 
summarizes all discovered signals and  
applied constrains. 

Step by step process of applying constrains 
can be used to understand at which point 
something went wrong:

● Used configuration files
● Command line constrains
● Constrains evaluation for given nets
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Accessing individual signals from a triplicated bus

In order to solve the problem, you have to “code” some triplication manually. If you 
declare a wire with a special name and with a special assignment (like bellow) you 
gain access to the signal after triplication:

This convention ensures that you can still simulate and synthesize you original 
design. TMRG will convert this declarations during elaboration process to the desired 
ones. Lets see how we can use this in our resetBlock example.

As you can see, we ended up with triplicated bus (9 signals!). 
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Accessing individual signals from a triplicated bus

In the previous example it was shown how to fanout a signal in order to 
access sub-signals in a triplicated signal. Now let us consider opposite 
situation, how to generate triplicated signal from arbitrary combination of 
other signals.

To make example easier to understand, lets take real-life problem: we 
want to make a clock gating circuit. A simple implementation with only one 
gating signal  may look like:

No magic so far.
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Accessing individual signals from a triplicated bus

If we want to be able to gate individual sub-signals in a triplicate clock,
we have to use similar trick as in the resetBlock.
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