

Ecole IN2P3 de microélectronique - 2017

Microelectronic R&D at CPPM

S.Bhat, P. Breugnon, Z. Chen, D. Fougeron, F. Gensolen, S. Godiot, A. Habib F. Léon, J. Liu , M. Menouni, P. Ollive, P. Pangaud, A. Wang.

The Center for particle physics of Marseille (CPPM) is strongly involved in the development of front-end chips for physics particles experiences (ATLAS) and enhances its competences in interdisciplinary projects (Medical Imaging, Plasma Imaging).

HL-LHC ATLAS upgrade phase II

RD53 (Hybrid pixel)

DepMAPS (Depleted MAPS)

•RD53: international collaboration for a common design pixel chips ATLAS/CMS phase II upgrades (~100 collaborators organized in different working groups (started 2012) http://rd53.web.cern.ch/RD53/)

The HV-CMOS pixel sensors, called DepMAPS (Depleted MAPS) and using commercial processes seem to be well-suited, especially for the outer barrels of the ATLAS ITK upgrade. The actual demonstrators should fill all the requirement requested by the ATLAS PIXEL TDR. Several prototypes on LFoundry 150nm technology have been designed and tested. The last version, the MONOPIX chip is a full monolithic circuit, with a fast digital readout data "à la" FE-I3.

The CCPD-LF is rad-hard up to 100Mrads and fluence 10¹⁵ n_{eq}/cm^2 with a fully depleted sensor at 70V.

- DNL: +/- 0.5 bit Operating input voltage : 0 – 900mV Conversion time : 14 clock cycles ✓ TID: 500 Mrad ✓ Tempsens & Irradsens included in PROTO65_V3

✓ LabTest & Irrad Test foreseen this year...

0.15 0.20 0.25 0.30 0.35

Interdisciplinarity

Demon

DEMON project is the result of collaboration between CPPM, PIIM, and CEA Cadarache, with the objective of developing advanced diagnostics aiming at measuring accurate fusion plasma properties. CPPM took in charge the design of a prototype hybrid X-ray photon counting detector with specifications to measure ions velocity and temperature in the WEST tokamak platform in Cadarache, with potential perspectives for ITER. The prototype matrix, named PLATO, is composed of 16 x 18 pixels with a 70 µm pixel pitch. New techniques have been used in analog sensitive blocks to minimize noise coupling through supply rails and substrate, and to suppress threshold dispersion across the matrix. The PLATO ASIC, designed in TSMC CMOS 0.13 µm technology, is currently under electrical tests. The presented performance summary is based on simulations.

Performance Summary

Pixel Architecture

MAPSSIC

MAPSSIC is a bio-medical imaging project aiming at correlating in vivo processes of neuronal communication with behavior in real time. It is a collaboration with IMNC, IPHC, CERMEP, CRNL, and NeuroPSI.

The objective is to design β^+ positrons probes directly implantable in rodent brain tissue on order to measure the radioactivity directly in the region of interest (few mm³). Such probes are part of an autonomous embedded system which must be operated in real time with wireless communication.

The MAPSSIC project is a second prototype (following PIXSIC) improving the sensitivity, spatial resolution and SNR of the radioactivity measurements.

Two probes has been designed, one based on ALPIDE (Alice Pixel Detector) and designed by

Technology	TSMC CMOS 0.13 μm
Pixel pitch	70 μm
Detectable energy range	3 – 10 keV
Non linearity	< 3%
Charge to voltage gain	75 mV/ke-
Photon count rate	12 x10 ⁷ ph/mm ² /s
Power consumption	5.2 μW
Equivalent Noise Charge (ENC)	42 e-rms
Readout time	 ≤ 7 µs using 200 MHz clock and 6 parallel outputs
Leakage current compensation	50 pA to 10 nA/pixel

colleagues at IPHC (cf. dedicated poster), and a second based on DepMAPS (see previous section) :

IMIC-LF chip

Size : 900 x 9 mm²

Sensitive area : 6 x 120 pixels

Technology : 0.15 µm Lfoundry CMOS process on high-resistivity 2kΩ.cm wafer ... Pixel design : fully depleted 50µm β^+ sensitivity (4ke-) and Gamma rejection (511kev) Detection efficiency : $50 \times 100 \ \mu m^2$ Based on DepMAPS (Depleted MAPS) : •Charge collection by drift •Asynchronous and synchronous operation •Standalone pixel and large fill factor •Analog and digital pixel readout

