NUSTAR instrumentation

J. Gerl

FAIR - France May 18, 2017 Orsay, France

FAIR NUSTAR JG

NUSTAR - The Project

2

	DESPEC	γ-, β-, α-, p-, n-decay spectroscopy		
	ELISE	elastic, inelastic, and quasi-free e ⁻ -A scattering		The Approach
	EXL	light-ion scattering reactions in invere kinematics		Complementary measurements leading to consistent
	HISPEC	in-beam γ spectroscopy at low and intermediate energy		answers
THE SECOND	ILIMA	masses and lifetimes of nuclei in ground and isomeric states		The Collaboration > 850 scientists
1	LASPEC	Laser spectroscopy		184 institutes
	MATS	in-trap mass measurements and decay studies		39 countries
	R3B	kinematically complete reactions at high beam energy	Ì	
	Super FRS	RIB production, identification and spectroscopy		
	SHE	Nuclear physics and chemistry of super-heavy elements		

NUSTAR - The Project

elastic inelastic, and quasi-free Evolutionary approach:

Advancing instrumentation by continuous development and gaining experience by physics exploitation

The Approach

Complementary measurements leading to consistent answers

The Collaboration > 850 scientists 184 institutes 39 countries

>50 instrumentation sub-projects (MSV) several 1000 major components

Nuclear physics and chemi super-heavy elements

HISPEC/DESPEC planned instrumentation

HISPEC

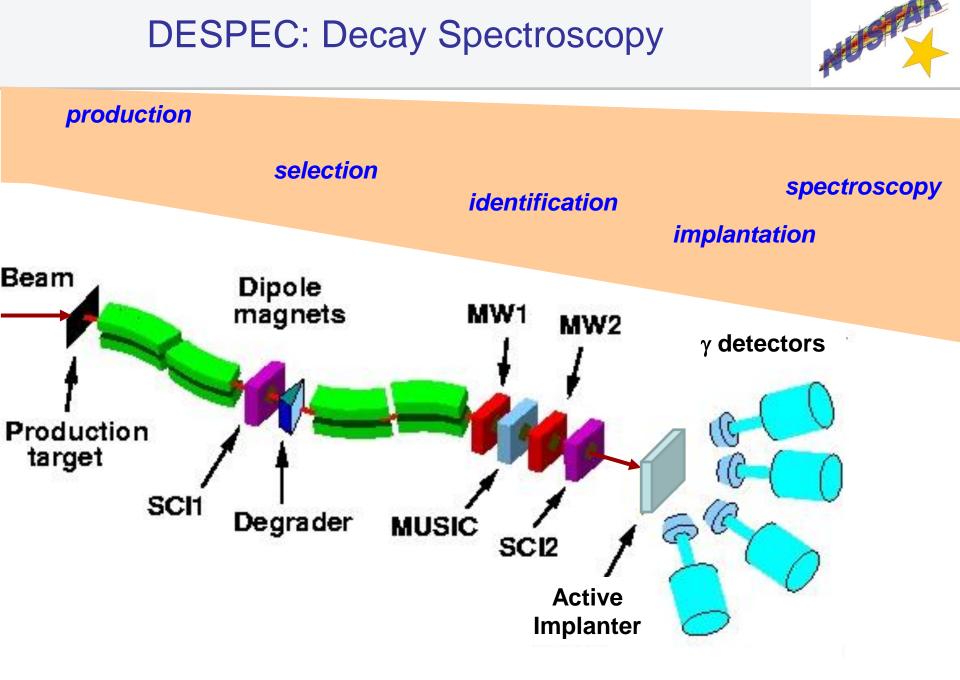
- -LYCCA heavy ion calorimeter with ToF capability in operation
- -AGATA gamma spectrometer in operation
- -Hyde light particle array prototype
- -NEDA Neutron detector array prototype

DESPEC

-AIDA active implantation device in operation
-MONSTER neutron ToF array under construction
-BELEN neutron detection array in operation
-DTAS Decay Total Absorption Spectrometer in operation
-DEGAS Ge Array gamma spectrometer in development
-FATIMA Fast timing array in operation
-MOMENTS In discussion

PRESPEC-AGATA = HISPEC-0

AGATA


ector

Experimental Campaign

AGATA Tracking array 3x2+6x3 crystals R = 12 - 40 cm $\epsilon_{Ph} = 5 - 9\%$ $\Delta E = 0.4 - 1.2\%$

DESPEC: Decay Spectroscopy

Previous RISING Set-up

Active Implanter Si-DSSSD array

Active area: 15x5 cm² Pixels: 3x16x16 = 768 Layers: fixed E-range: 10 GeV log Processing time: 200µs

Rate limitations due to too few pixels

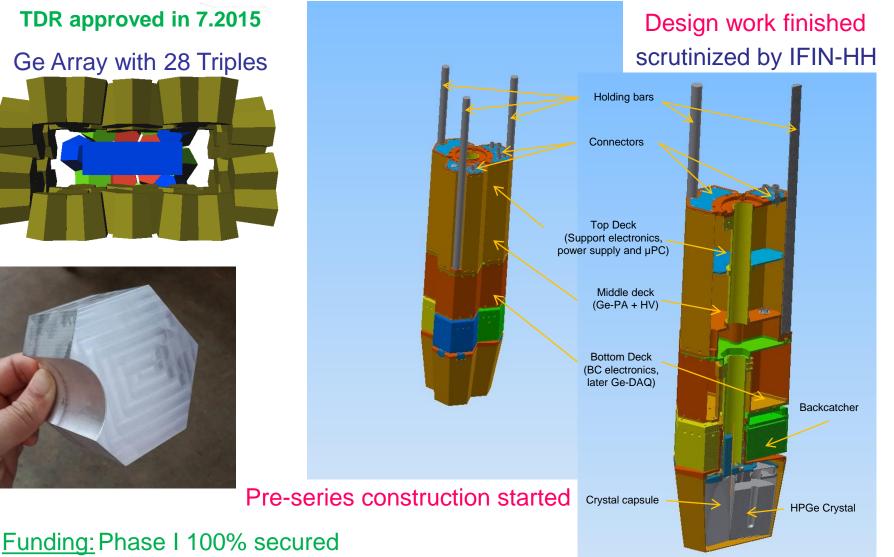
2007-2009

RISING 7-fold Cluster Ge array No. Ge Det.: 7x15 = 105 Efficiency: 15% E-range: 50 keV ... 5 MeV

K-isomer lifetime limitations due to missing environmental shielding

...evolution to the next generation

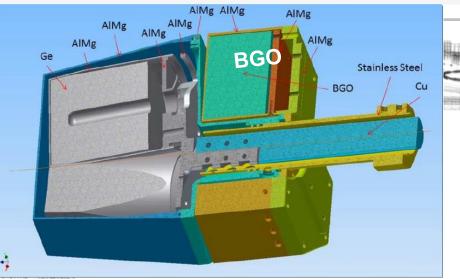
AIDA – DEGAS Set-up

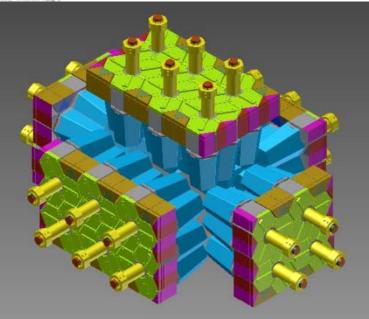

AIDA Trigger-less Si-DSSSD array

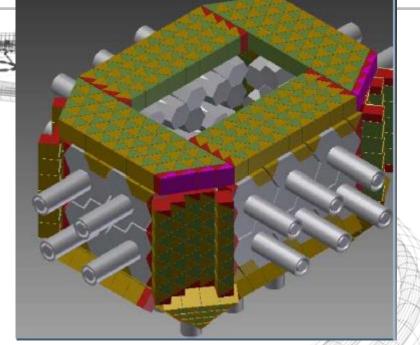
Active area: 24x8 cm², 8x8 cm² Pixels: 3x128x128 = 49152 Layers: variable E-range: 20 MeV + 20 GeV Processing time: 20µs DEGAS Shielded Triple Cluster Ge array No. Ge Det.: 3x28 = 84 Efficiency: 23% E-range: 50 keV ... 5 MeV

> Platform and holding structures to be supplied

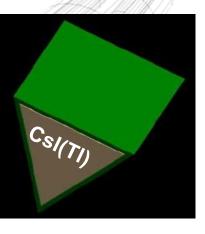
DEGAS Detector Realization



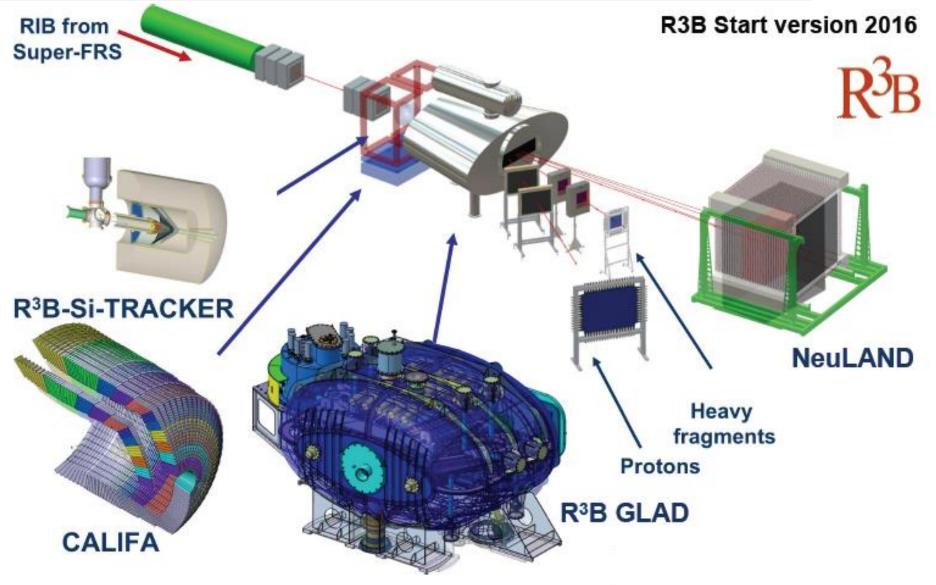



Phase II ≈80% secured

DEGAS Shield Design



- Active scintillator shields
- Background reduction
- Compton suppression
- SiPM read-out
- time, energy

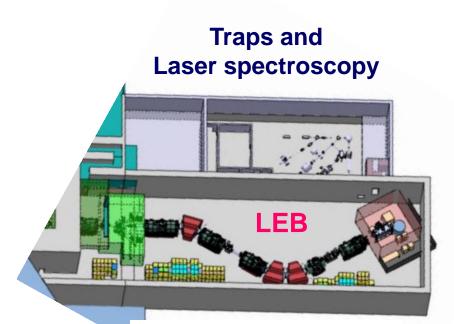

Sideshields to be

supplied

R3B: reaction studies

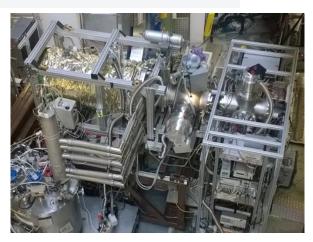
CALIFA

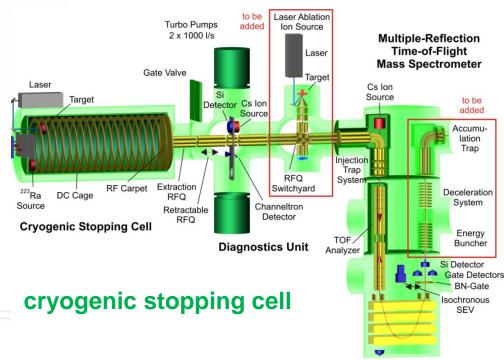
NeuLAND



[200 MeV						600 MeV							1000 MeV					
		generated								ge	nerat	ed				generated				
	%	1n	2n	3n	4n	5n]_[%	1n	2n	3n	4n	5n	\square	%	1n	2n	3n	4n	5n
	1n	88	31	6	1	0	detected	1n	92	22	2	0	0		1n	89	12	1	0	0
_	2n	2	62	37	10	2		2n	2	71	32	7	1		2n	7	78	23	3	0
tec	3n	0	5	49	38	14		3n	0	6	55	32	9	tec	3n	0	8	63	26	5
tec	4n	0	0	8	48	54		4n	0	0	10	57	50	tec	4n	0	0	12	63	40
de	5n	0	0	0	3	26		5n	0	1	1	4	35	de	ep 5n 6n	0	0	0	7	46
	6n	0	0	0	0	3		6n	0	0	0	0	5			0	0	0	0	8

Further planes to be supplied


Preparing slow beams



Gamma spectroscopy buncher/spectrometer

...novel concepts

Conclusions

- NUSTAR at GSI/FAIR enables unique and important contributions to our understanding of the atomic nucleus
- Planned and available instrumentation is state-of-the-art
- Planning and preparation for NUSTAR Phase-0 experiments at GSI from 2018 onwards has started
- Nw collaborators are highly welcome
- Various fields of engagement: physics (experiment and theory), instrumentation development, and infrastructure

