Study of multi-neutron configurations towards the neutron drip-line

F. De Oliveira, A. Chbihi, A. Revel and *O. Sorlin* (GANIL)
M. Marquès et al. (LPC – Caen)
A. Corsi, et al. (IRFU Saclay)
D. Galaviz Redondo, et al. (Lisboa)
G. Verde (LNS Catane)
+ the R3B collaboration

How is superfluidity evolving towards the drip line (seq / direct / BCS-BEC/ quasi molecular)?

Does a generalized Ikeda conjecture hold for di- and tetra-neutron configurations?

Which reaction mechanism can be used to study these pheneomena?

Signs of superfluidity, evolution towards the drip line

Pairing correlations play essential role in atomic nuclei and in neutron stars (NS)

- oscillations in S_n values
- g.s. spin 0⁺ of even-even nuclei
- Moment of inertia << rigid value
- Enhanced pair transfer
- cooling of NS, glitches

Pairing scheme towards drip-line: from BCS to BEC ? (e.g. Hagino et al. PRL99 (2007))

- Few information available
- Evolution with binding energy ?
- -> Different systems needed to underestand pairing
- -> Determine average distance r_{nn} between neutrons

Possible existence of a narrow 4n resonance (e.g. Marquès, Shimura)

- -> Tetra neutron correlations could play a role in describing the superfluidity in nuclei
- -> Role not yet revealed or studied in atomic nuclei

How to study these correlations ?

-> Suddenly promote neutrons in the continuum and observe their decay -> GSI/NEULAND/GLAD

Ikeda's conjecture applied to neutron cluster configurations?

α,2p,2n clustering (adapted from J. Okolowicz, et al. Prog. Th. Phys. Supp. 196 (2012))

Ikeda's conjecture applied to neutron cluster configurations?

α,2p,2n clustering (adapted from J. Okolowicz, et al. Prog. Th. Phys. Supp. 196 (2012))

- Are there narrow resonances systematically present around S_{2n.4n} thresholds?
- If present, are their production influenced by the reaction mechanism?

-> use different probes, i.e. (-1n) and (-1p) knockout.

How 2n correlations look like above S_{2n}?

-> Direct or Sequential decays / gamma-decay ?

Neutron correlations in the neutron-rich ¹⁸C nucleus ${}^{18}C \approx {}^{14}C$ core +4n valence neutrons

- High energy *proton* knock-out reaction (p,2p) at GSI (400A.MeV) -> quasi-free mechanism
- Deeply bound proton orbitals -> energy piston to promote neutrons into the continuum
- Sudden approximation -> neutron correlations weakly affected by proton knock-out
- Deduce information on their correlations from their observed decay patterns

Neutron correlations in the neutron-rich ²⁰O nucleus

 20 O \approx 16 O core +4n valence neutrons

- High energy *neutron* knock-out reaction (p,pn) at GSI (400A.MeV)
- Deeply bound neutron orbitals -> energy piston to promote neutrons into the continuum
- Neutron correlations likely affected by neutron knock-out
- How their correlations in ²⁰O deviate from the ¹⁸C isotone ?

Proton knockout reaction to study unbound states in ¹⁸C at GSI

90% of the decays proceeds without γ -decay

Energy spectra of ¹⁸C derived from detecting 1n or 2n

- Need a better energy resolution to confirm its narrow width
- Need a better efficiency at low energy to see its possible 2n branch
- Need a better granularity to identify 4n decays

A. Revel (GANIL) preliminary

Neutron-neutron and core-neutron correlations in ¹⁸C

Neutron-neutron and core-neutron correlations in ²⁰O

Proposal at the next PAC (to be run in 2019)

- Benefit from the increased granularity of NEULAND -> better energy resolution, multi neutron
- Increased primary beam intensity (factor 3), use of a LH₂ target (factor 5.5)
- -> Search for 2n (and 4n) resonances at thresholds in ^{20}C and ^{17}B / competition with γ decay
- -> see if neutron correlations observed in ¹⁸C vanish when studied through ¹⁹C(-1n)¹⁸C

Proposal at the next PAC (to be run in 2019)

- Benefit from the increased granularity of NEULAND
 -> better energy resolution, possibility to disentengle multi neutron events
- Increased primary beam intensity (factor 3)
- Use of a LH₂ target (factor 5.5)
- -> Search for 2n (and 4n) resonances at thresholds in ²⁰C and ¹⁷B / competition with γ decay
- -> see if neutron correlations observed in ¹⁸C vanish when sudied through the ¹⁹C(-1n)¹⁸C reaction

Study of correlations and mean distance between neutrons

Observables:

E_d,

Invariant mass spectra between nn and core-n as a function of E_d

Very different behavior between the (-1p) and (-1n) decays -> less correlations in ²⁰O Strong nn correlations in ¹⁸C -> Predominance of direct decay Much weaker correlations in ²⁰O -> 50% of sequential decay Energy spectrum of ¹⁸C derived from detecting 1n or 2n

Relative energies between core and neutrons A. Revel (GANIL)

Short range strategy:

- Finish the present analysis
- Select sequential events for spectroscopy of intermediate states (in progress)

Angular spectra of ¹⁸C and ²⁰O

Direct decay dominates + very short r_{nn} Indication of di-neutron component ? Depletion at $cos(\theta_{c/nn}) = 0$ at large E_d Sequential decay strongly dominating

Angular spectra between the neutrons

Angular spectra between the neutrons and the core

- Two angles as observables: $\theta_{nn} \& \theta_{c/nn}$
- Relative energies as observables
- Fit the data using $\neq r_{nn} \& E_r$, Γ_r values
- Treat FSI with each set of parameters
- Derive fraction of sequential and direct decay

Simulation program

- Geometry of the setup
 - Dead paddles
 - Interaction with the detector
 - Deepness
 - Discrimination between 1n and 2n events
- Event generator
 - 2-body simulation (fragment + neutron)
 - Phase space
 - 3-body simulation (fragment + neutron + neutron)
 - Phase space
 - Correlation between neutrons
 - Sequential emission of neutrons

Angular spectra between the core and neutrons

- Relative energies as observables
- Two angles $\theta_{nn} \& \theta_{c/nn}$ as observables

- Fit the data using $\neq r_{nn} \& (E_r, \Gamma_r)$ values
- Treat FSI with each set of parameters
- Derive fraction of sequential and direct decay

Simulations A. Revel, M. Marquès

