Study of multi-neutron configurations towards the neutron drip-line

F. De Oliveira, A. Chbihi, A. Revel and O. Sorlin (GANIL)
M. Marquès et al. (LPC - Caen)
A. Corsi, et al. (IRFU Saclay)
D. Galaviz Redondo, et al. (Lisboa)
G. Verde (LNS Catane)

+ the R3B collaboration

How is superfluidity evolving towards the drip line (seq / direct / BCS-BEC/ quasi molecular) ?

Does a generalized Ikeda conjecture hold for di- and tetra-neutron configurations ?

Which reaction mechanism can be used to study these pheneomena?

Signs of superfluidity, evolution towards the drip line
Pairing correlations play essential role in atomic nuclei and in neutron stars (NS)

- oscillations in S_{n} values
- g.s. spin 0^{+}of even-even nuclei
- Moment of inertia << rigid value
- Enhanced pair transfer
- cooling of NS, glitches

Pairing scheme towards drip-line: from BCS to BEC ? (e.g. Hagino et al. PRL99 (2007))

- Few information available
- Evolution with binding energy ?
-> Different systems needed to underestand pairing
-> Determine average distance $r_{n n}$ between neutrons

Possible existence of a narrow 4 n resonance (e.g. Marquès, Shimura)
-> Tetra neutron correlations could play a role in describing the superfluidity in nuclei
-> Role not yet revealed or studied in atomic nuclei
How to study these correlations?
-> Suddenly promote neutrons in the continuum and observe their decay -> GSI/NEULAND/GLAD

Ikeda's conjecture applied to neutron cluster configurations?
$\alpha, 2 p, 2 n$ clustering (adapted from J. Okolowicz, et al. Prog. Th. Phys. Supp. 196 (2012))
Hoyle state

Ikeda's conjecture applied to neutron cluster configurations?
a,2p,2n clustering (adapted from J. Okolowicz, et al. Prog. Th. Phys. Supp. 196 (2012))
Hoyle state

- Are there narrow resonances systematically present around $S_{2 n, 4 n}$ thresholds?
- If present, are their production influenced by the reaction mechanism?
-> use different probes, i.e. (-1n) and (-1p) knockout.
- How $2 n$ correlations look like above $\mathrm{S}_{2 \mathrm{n}}$?
-> Direct or Sequential decays / gamma-decay ?

Neutron correlations in the neutron-rich ${ }^{18} \mathrm{C}$ nucleus
${ }^{18} \mathrm{C} \approx{ }^{14} \mathrm{C}$ core +4 n valence neutrons

- High energy proton knock-out reaction (p,2p) at GSI (400A.MeV) -> quasi-free mechanism
- Deeply bound proton orbitals -> energy piston to promote neutrons into the continuum
- Sudden approximation -> neutron correlations weakly affected by proton knock-out
- Deduce information on their correlations from their observed decay patterns

Neutron correlations in the neutron-rich ${ }^{20} \mathrm{O}$ nucleus
${ }^{20} \mathrm{O} \approx{ }^{16} \mathrm{O}$ core +4 n valence neutrons

- High energy neutron knock-out reaction (p,pn) at GSI (400A.MeV)
- Deeply bound neutron orbitals -> energy piston to promote neutrons into the continuum
- Neutron correlations likely affected by neutron knock-out
- How their correlations in ${ }^{20} \mathrm{O}$ deviate from the ${ }^{18} \mathrm{C}$ isotone ?

Proton knockout reaction to study unbound states in ${ }^{18} \mathrm{C}$ at GSI

90% of the decays proceeds without γ-decay

Energy spectra of ${ }^{18} \mathrm{C}$ derived from detecting 1 n or 2 n

Neutron-neutron and core-neutron correlations in ${ }^{18} \mathrm{C}$

Neutron-neutron and core-neutron correlations in ${ }^{20} \mathrm{O}$

Strong evidence of sequential decay

Small relative n-n energies
Short mean distance between neutrons $<r_{n n}>$
-> Rise of invariant mass $\mathrm{M}_{\mathrm{nn}}{ }^{2}$ curve at ≈ 0

Resonant state in the core-n system
-> Peak in invariant mass $\mathrm{M}_{\mathrm{cn}}{ }^{2}$

Proposal at the next PAC (to be run in 2019)

- Benefit from the increased granularity of NEULAND -> better energy resolution, multi neutron
- Increased primary beam intensity (factor 3), use of a LH_{2} target (factor 5.5)
-> Search for 2 n (and 4 n) resonances at thresholds in ${ }^{20} \mathrm{C}$ and ${ }^{17} \mathrm{~B} /$ competition with γ decay -> see if neutron correlations observed in ${ }^{18} \mathrm{C}$ vanish when studied through ${ }^{19} \mathrm{C}(-1 \mathrm{n}){ }^{18} \mathrm{C}$

Proposal at the next PAC (to be run in 2019)

- Benefit from the increased granularity of NEULAND
-> better energy resolution, possibility to disentengle multi neutron events
- Increased primary beam intensity (factor 3)
- Use of a LH_{2} target (factor 5.5)
-> Search for 2 n (and 4 n) resonances at thresholds in ${ }^{20} \mathrm{C}$ and ${ }^{17} \mathrm{~B} /$ competition with γ decay
-> see if neutron correlations observed in ${ }^{18} \mathrm{C}$ vanish when sudied through the ${ }^{19} \mathrm{C}(-1 \mathrm{n}){ }^{18} \mathrm{C}$ reaction

Study of correlations and mean distance between neutrons

Observables:
E_{d},
$\mathrm{M}^{2}{ }_{\mathrm{nn}}$ and $\mathrm{M}_{\mathrm{fn}}{ }^{2}$,

Fit data using $\neq r_{n n}$ \& $\left(E_{r}, \Gamma_{r}\right)$ Treat FSI
Direct /Sequential decay

A. Revel, M. Marquès

Invariant mass spectra between $n n$ and core-n as a function of E_{d}

Very different behavior between the (-1 p) and (-1 n) decays -> less correlations in ${ }^{20} \mathrm{O}$ Strong nn correlations in ${ }^{18} \mathrm{C}->$ Predominance of direct decay
Much weaker correlations in ${ }^{20} \mathrm{O}$-> 50% of sequential decay

Energy spectrum of ${ }^{18} \mathrm{C}$ derived from detecting 1 n or 2 n

Relative energies between core and neutrons A. Revel (GANIL)

Short range strategy:

- Finish the present analysis
- Select sequential events for spectroscopy of intermediate states (in progress)
- Exploit already existing data in other systems studied at R3B
- Look at the evolution of neutron correlations in isotopic \& isotonic chains
- Study correlations in systems produced from different reactions

From existing
$\left[\begin{array}{c}\text { From existing } \\ \text { data of the last } \\ \text { campaign } \\ \text { Anyone } \\ \text { Interested } \\ ?\end{array}\right.$

Angular spectra of ${ }^{18} \mathrm{C}$ and ${ }^{20} \mathrm{O}$

Strongly peaked signal as small $\cos \left(\theta_{n n}\right)$ Direct decay dominates + very short $r_{n n}$ Indication of di-neutron component?

Modest increase at small $\cos \left(\theta_{n n}\right)$ Depletion at $\cos \left(\theta_{c / n n}\right)=0$ at large E_{d} Sequential decay strongly dominating

Angular spectra between the neutrons

- Relative energies as observables
- Two angles $\theta_{\mathrm{nn}} \& \theta_{\mathrm{c} / \mathrm{nn}}$ as observables
- Fit the data using $\neq r_{n n} \& E_{r}, \Gamma_{r}$ values
- Treat FSI with each set of parameters
- Derive fraction of sequential and direct decay
n-n FSI simulation

- Increase at low $\cos \left(\theta_{n n}\right)$ for short $r_{n n}$

Sequential decay + n-n FSI simulation

$\Gamma_{\mathrm{r}}=2 \mathrm{MeV}$

- Basically flat
- Increase at low $\cos \left(\theta_{\mathrm{nn}}\right)$ for broad Γ_{r} -> mimic direct decay

Simulation program

- Geometry of the setup
- Dead paddles
- Interaction with the detector
- Deepness
- Discrimination between $1 n$ and $2 n$ events
- Event generator
- 2-body simulation (fragment + neutron)
- Phase space
- 3-body simulation (fragment + neutron + neutron)
- Phase space
- Correlation between neutrons
- Sequential emission of neutrons

Angular spectra between the core and neutrons

- Relative energies as observables
- Two angles $\theta_{\mathrm{nn}} \& \theta_{\mathrm{c} / \mathrm{nn}}$ as observables

- Fit the data using $\neq r_{n n}$ \& $\left(E_{r}, \Gamma_{r}\right)$ values
- Treat FSI with each set of parameters
- Derive fraction of sequential and direct decay

