Radiation effects in astrophysical ices and biomolecules

Philippe Boduch (Université Caen Normandie) Alicja Domaracka (CNRS) Hermann Rothard (CNRS) *(rothard@ganil.fr)*

CIMAP-CIRIL-Ganil

Centre de Recherche sur les Ions, les Matériaux et la Photonique (Normandie Univ. CEA CNRS ENSICAEN Université de Caen-Normandie UCN)

Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05, France

Astrochemistry and Astrobiology

Credit: Bill Saxton, NRAO/AUI/NSF

Astrophysics + Chemistry @ CIMAP-GANIL + GSI

Centre de Recherche sur les lons, les MAtériaux et la Photonique

IGLIAS

(ANR)

UNIVERSITÉ CAEN NORMANDIE

laboratory simulation of cosmic ray effects **Heavy ions:** wide dE/dx range (scaling laws)

Infrared Absorption Spectroscopy FTIR (+ TOF-SIMS, QMS, UV-vis, Chromatography)

Comparison to space observations

Input to astrochemical models (cross sections: scaling laws)

Why?

Ices ubiquitous in space (dust grains, molecular clouds, icy satellites, comets, Trans Neptunian Objects, ...)

Physico-chemical evolution of icy bodies in space exposed to cosmic rays?

Structure: amorphous vs. cristalline, porous vs. compa Radiolysis: radiation resistance and survival times of molecules in space (destruction cross sections)

Formation of **new** molecular **species** (cross sections)

Radiation Field in Space : complex ! (UV, e-, x-rays, ions)

Heavy lons: why?

- large electronic energy loss S_e

- Scaling laws: S_e^n with $n \approx \frac{1}{2}, 1, \frac{3}{2}, \frac{2}{2}, \dots 4$

- Unexplained findings (gas phase molecules in dense clouds...), few data
- Astrochemistry: origin of CO₂ and H₂SO₄ on Europe, emergence of life?

projectiles: Ni Ti Xe

Projectile fluence dependence

Projectile fluence dependence

CO₂: Compaction* destruction (fragmentation) sputtering

Formation of **CO**, **O**₃, **CO**₃

*C.F. Mejía, A.L.F. de Barros, E. Seperuelo Duarte, E.F. da Silveira, E. Dartois, A. Domaracka, H. Rothard, P. Boduch, **Compaction of porous ices rich in water by swift heavy ions** Icarus <u>250</u> (2015) 222

CO₂: Sputtering yield

Interstellar Medium: Dense Molecular Clouds

Density of 10^3 - 10^6 particles cm⁻³, mainly H₂, T~10 K. Star formation.

Molecules in gas phase and dust grains covered by ice mantles.

Possibly complex organic chemistry in ice mantles due to:

- Surface reactions
- UV and ion processing.

Size: up to some tens of Parsecs **Lifetime:** 10^{6} - 10^{9} years

Horsehead Nebula

Estimated ion induced CO Desorption Yield

0

Desorption rate of CO as a function of visual extinction

E. Seperuelo Duarte, A. Domaracka, P. Boduch, H. Rothard, E. Dartois, E.F. da Silveira Astronomy & Astrophysics <u>512</u> (2010) A71

Formation and radioresistance of COMs

at GSI (Unilac M-Branch) 2016

ap

Complex organic molecules **COMs**

- In Astrophysics: at least 6 atomes, at least 1 C
- CH₃OH, amino-acids, nucleo-bases, proteins...
- Essential bricks for the emergence of life
- In dense clouds, in comets (Rosetta: amino acids)

→ THE COMETARY ZOO: GASES DETECTED BY ROSETTA

Propane Butane Pentane Hexane Heptane

THE ALCOHOLS Methanol Ethanol Propanol Butanol Pentanol

THE TREASURES WITH A HARD CRUST

Sodium Potassium Silicon Magnesium

www.esa.int

THE AROMATIC RING COMPOUNDS Benzene Toluene **Xylene** Benzoic acid Naphtalene

THE VOLATILES

Nitrogen Oxygen Hydrogen peroxide Carbon monoxide Carbon dioxide

THE "SALTY" BEASTS Hydrogen fluoride Hydrogen chloride Hydrogen bromide Phosphorus Chloromethane

AND SOLITARY Argon Krypton Xenon

THE KING OF THE ZOO

Glycine (amino acid)

Credits: Based on data from ROSINA

THE "MANURE SMELL" MOLECULES Ammonia Methylamine Ethylamine

Hydrogensulphide Carbonylsulphide Sulphur monoxide Sulphur dioxide Carbon disulphide

THE "EXOTIC" MOLECULES

Formic acid Acetic acid Acetaldehyde Ethylenglycol Propylenglycol Butanamide

Methanethiole Ethanethiol Thioformaldehyde

> THE MOLECULE IN DISGUISE Cyanogen

European Space Agency

Cimap

Acetylene Hydrogen cyanide Acetonitrile Formaldehvde

THE "SMELLY

Radiolysis: formation of prebiotic molecules ?

G. M. Muňoz Caro, E. Dartois,

P. Boduch, H. Rothard,

A. Domaracka, A. Jiménez-Escobar Comparison of UV and high-energy ion irradiationof methanol:ammonia ice Astron. & Astrophys. 566 (2014) A93

NH₃:CH₃OH ice

CASIMIR@GANIL: Zn (SME), Ne (IRRSUD)

New bands attributed to irradiation products

	position ^a (cm ⁻¹)	Assignment	vibration mode
	2340	CO_2	CO str.
	2160	OCN ⁻	CN str.
	2138	CO	CO str.
	1740	C=O ester/aldehyde	CO str.
•	1720	H_2CO	CO str.
	1694	$HCONH_2$?	CO str.
	1587	COO ⁻ in carb. ac. salts ^{b,c}	COO ⁻ asym. str.
	1498	H_2CO	CH ₂ scis.
	1385	CH ₃ groups	CH ₃ sym. def.
2	1347	COO ⁻ in carb. ac. salts ^{b,c}	COO ⁻ sym. str.
Г	1303	CH ₄	def.

at 300K: stable organic **Residues!**

Frequency	Wavelength	Temp.	Molecule
(cm^{-1})	(µm)	(K)	
2233	4.48	13	N ₂ O
2218-2200	4.51-4.54	300	nitriles [†]
2168	4.61	13, 300	OCN-
2147	4.66	300	aliph. isocyanide [†]
~2112	4.73	300	NCO_2^{\dagger}
1725	5.80	300	ester [†]
1683	5.94	300	amides [†]
1652	6.05	300	$asym-N_2O_3^{\dagger}$
1637	6.11	13	?
1593	6.28	300	NH ₃ ⁺ CH ₂ COO ^{-†}
1558	6.42	300	?
1533	6.52	300	?
1506	6.64	300	NH ₃ ⁺ CH ₂ COO ^{-†}
~1490	6.71	13	NH_4^+
1474	6.78	13	NO_3^{\dagger}
1440	6.94	13	NH ⁺ ₃ CH ₂ COO ^{-†}
1415	7.07	300	NH ⁺ ₃ CH ₂ COO ^{-†}
~1370	7.30	13, 300	HMT [†]
			HCOO-
~1338	7.47	13, 300	NH ₃ ⁺ CH ₂ COO ^{-†}
			NH ₂ CH ₂ COO ^{-†}
			HCOO-
1305	7.66	13	$N_2O_3^{\dagger}; N_2O_4^{\dagger}$
1283	7.80	300	N ₂ O [†]

$H_2O - CO - NH_3$ ice

\Rightarrow glycine (amino acid)

 $C_2H_5NO_2$

hexamethylenetetramine HMT

S. Pilling, E. Seperuelo Duarte, E. F. da Silveira, E. Balanzat, H. Rothard, A. Domaracka, P. Boduch *Radiolysis of ammonia-containing ices by energetic, heavy and highly charged ions inside dense astrophysical environments,* Astronomy & Astrophysics 509 (2010) A87

(X) http://osulibrary.oregonstate.edu/specialcollections/coll/pauling/bond/index.html

Radiation resistance of complex organic molecules

irradiation with swift heavy ions at GANIL and GSI Laboratory simulation of cosmic ray effects

First results: adenine

Adenine

 $C_5H_5N_5$

purine nucleobase

Part of biomolecules of unique importance (ATP, DNA, RNA)

evolutionarily preserved in all living beings, including viruses.

D

IR spectra: Evolution with projectile fluence

Adenine irradiation experiments at Ganil (IRRSUD, SME) and GSI (Unilac M-Branch)

lon Beam	Energy (MeV/u)	Electronic stopping power (keV.µm⁻¹)	Nuclear stopping power (keV.µm⁻¹)	Thickness (µm)	Penetration depth (µm)
Xe ⁺²³	0.7	1.12 x 10 ⁴	6.95 x 10 ¹	0.29	16
Kr ³³⁺	10.5	5.80 x 10 ³	3.6	0.50	120
Ca ¹⁰⁺	4.8	3.3 x 10 ³	2.22	0.35	50
C ⁴⁺	0.98	1,00 x 10 ³	0.9	0.25	12

ap

Evolution with projectile fluence: peak intensity (914 cm⁻¹)

ap

Cross section as a function of the **stopping power:**

$$\phi(Z,E) = \frac{C(Z) E^{0.3}}{(E+E_0)^3}$$

Cimap

Webber WR, Yushak SM. Astrophys J 1983;275:391. Destruction rate

H and Fe (heavy ion component!) dominant

Cimap

Astrophysical implications?

Half-life of solid adenine exposed to cosmic rays in the ISM

1

$$\tau_{1/2} = \ln 2 \left(4\pi \sum_{Z} \int_{10^{-1}}^{10^3} \sigma(Z, E) \Phi(Z, E) dE \right)^{-1} = 10 \pm 8 \times 10^6 \text{ years}$$
Dense Molecu

Dense Molecular Cloud lifetime: 10⁶-10⁹ years High survival probability!

UV photons				
Region	Half-life (Myears)	UV flux (cm ⁻² s ⁻¹)		
ISM	0.45	1.0 x 10 ⁸		
Dense Clouds (DC)	4.5 x 10 ⁴	1.0 x 10 ³		

Cosmic Rays		
Region	Half-life (Myears)	
ISM	10	
Dense Clouds (DC)	≈10	

Comparison to UV radiation: Cosmic ray destruction dominates inside the DC Gabriel S. V. Muniz, C. F. Mejía, R. Martinez, B. Auge, H. Rothard, A. Domaracka, Ph. Boduch *Radioresistance of adenine to cosmic rays* Astrobiology (2017) 17(4): 298-308 A.N. Agnihotri¹, B. Augé¹, M. Chabot°, E. Dartois², J.J. Ding¹, X. Lv¹, R. Martinez^{1,3}, C. Mejia^{1,4}, G.S.V. Muniz¹, D.P. Andrade⁵, A.L.F. de Barros⁶, V. Bordalo⁷, D. Fulvio⁴
S. Pilling⁵, E. Seperuelo-Duarte⁸, E.F. da Silveira⁴, M.E. Palumbo⁹, G. Strazzulla¹⁰, M. Bender¹¹, D. Severin¹¹, C. Trautmann^{11,12}

- ¹ Centre de Recherche sur les Ions, les Matériaux et la Photonique, CIMAP-CIRIL-Ganil, **France**.
- ² Institut d'Astrophysique Spatiale IAS, Orsay, **France**.
- ° Institut de Physique Nucléaire IPNO, Orsay, France.
- ³ Phys. Dept., Universidade Federal do Amapá, Macapa, **Brazil**.
- ⁴ Pontifícia Universidade Católica do Rio de Janeiro PUC, Brazil.
- ⁵ Universidade do Vale do Paraíba UNIVAP, São José dos Campos, **Brazil**.
- ⁶ Phys. Dept., CEFET Celso Suchow da Fonseca, Rio de Janeiro, **Brazil**.
- ⁷ Observatorio Nacional-MCTI, Rio de Janeiro, **Brazil**.
- ⁸ Grupo de Física e Astronomia, CEFET/Química, Nilópolis, Brazil.
- ⁹ INAF-Osservatorio Astrofisico di Catania, Catania, Italy.
- ¹⁰ Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, **Germany**.
- ¹¹ Technische Universität Darmstadt, Germany.

Thanks to our other co-authors, and to our colleagues from CIMAP:

- E. Balanzat, T. Been, A. Cassimi, F. Durantel, S. Guillous, C. Grygiel,
- D. Lelièvre, F. Levesque, T. Madi, I. Monnet, Y. Ngono-Ravache,
- F. Noury, J.M. Ramillon, F. Ropars, P. Voivenel

Topical Review:

H. Rothard, A. Domaracka, Ph. Boduch, M. E. Palumbo,
G. Strazzulla, E. F. da Silveira, E. Dartois *Modification of ices by cosmic rays and solar wind*J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 062001

financial support:

- * PHC Capes-Cofecub France-Brésil
- * CNPq (postdoctoral grant), FAPERJ
- * EU Cost action "the chemical cosmos"
- * Chinese Scholarship Council CSC
- * Région Basse Normandie
- * SPIRIT + EMIR networks
- * European Commission, FP7 for RTD (2007-2013) Capacities Program (Contract No. 262010, ENSAR)
- * EU's Horizon 2020 Research and Innovation
 - Programme (grant No. 654002 ENSAR2).
- * ANR-13-BS05-0004 IGLIAS

