

Baryon resonance studies with HADES at FAIR

B. Ramstein (IPN Orsay) FAIR-FRANCE meeting, 17 May 2017 Orsay

Fair France meeting

HADES : hadronic physics and hadronic matter interplay

e⁺e⁻ and meson (π, η, ρ, ω, ϕ , K) production in hadronic reactions SIS18@GSI E/A ~1-3.5 GeV

see J. Stroth's talk

proton, pion, light and heavy ion beams –

LH2 (p) or nuclear targets

Time-like electromagnetic transitions $N^*/\Delta \rightarrow Ne^+e^-$ (first | meas.)

space like transitions
(CLAS N* program)

Space-like and time-like electromagnetic baryonic transitions Trento, May 8 - 12, 2017

40 participants

Organizers Philip Cole (Idaho State University - Department of Physics) Beatrice Ramstein (Institut de Physique Nucléaire d'Orsay) Andrey Sarantsev (University of Bonn and NRC KI Gatchina)

photoproduction experiments (Jlab, Mainz, Bonn,...)

Time like baryon electromagnetic transitions in pp reactions

π° Dalitz • $pp \rightarrow ppe^+e^-E=1.25 \text{ GeV}$ dσ/dM_{ee} [mb/(GeV/c²)] first measurement of Δ (1232) Dalitz decay BR($\Delta^+ \rightarrow pe^+e^-) = 4.19 \pm 0.42$ (model) ± 0.46 (syst.) ± 0.34 (stat.) 10^{-5} . 10^{-4} HADES collaboration: <u>arXiv:1703.07840</u> [nucl-ex](PRC, accepted) More [GeV/c² Dalitz 10-6 Slight sensitivity to electromagnetic structure 10-7 (form factor) of the N- Δ transition 0.3 Q²= T. Pena and G. Ramalho Phys. Rev. D85 (2012) 113014 0.1 0.2 0.4 0.5 Mee [GeV/c²] $pp \rightarrow ppe^+e^- E=3.5 \text{ GeV}$ Evidence of form factors of the Vector **Meson Dominance** type (coupling to ρ) bơ/dm_{ee} [μb/GeV] Hades coll. Eur. Phys. J. A50 (2014) 8 dN/dM ρ. ω, ρ', ω', ... 0.4 0.5 0.6 10 0.3 Pion production measured in parallell $Q^2 = M_{inv}^{e^+e^-}$ [GeV/c²] 0.4 0.6 0.8 to constrain underlying mechanisms Weil, et al., EPJA 48, 111 (2012) A. Belounnas on-going PhD

Pion beam experiment with HADES

IPN technical contribution in HADES

4th station of the tracking system:
6 drift chambers built by IPN R&D group drift cell (14x10 mm²)
active area 21 m², 7200 sense wires last chamber delivered 2006

X,Y det2

Pion beam optics calculation 2014

X,Y det1

LH2 target (built in 2000 by IPN Cryogenics group)

Fair France meeting

pion production target ¹²C + Be → π⁻+ 2

Preparing for FAIR: HADES Upgrade

HADES in the FAIR era: SIS18 experiments =FAIR Phase0 experiments

Experimental proposal for beam time in 2018-2019: dead line June 19 !

✓ Exploit π beam →investigate heavier resonances $\Delta(1620)$, N(1720),... in e⁺e⁻ channels and many hadronic channels e.g. π ⁻p→ $\pi\pi$ n, ω n, η n, η n, $K^0\Lambda$, $K\Sigma$,.... κ

✓ Study of medium effects (dilepton+strangeness in Ag+Ag at 1.65 GeV) (see J. Stroth's talk)

Unique at the moment, But soon JPARC competition (for hadronic channels only !)

Pave the way for future meson beam facilities at EIC *W. J. Briscoe et al., Eur. Phys. J. A51 (2015) no.10, 129*

Further measurements at SIS18

- HADES has demonstrated excellent Λ ($\rightarrow p\pi^{-}$) and e^+e^- meas. capabilities
- Hyperon states are narrow : can be identified in inclusive pp or pA reactions at e.g. T=4.5 GeV
- Radiative decays of hyperons Y ${\rightarrow}\Lambda\gamma$
- e.g. not known for $\Lambda(1405)$,
- Large sensitivity to intrinsic structure (quark correlation)
- Dalitz decays of hyperons $Y \rightarrow \Lambda e+e-$ (BR~10⁻⁵)
- no existing measurement, time like transition form factors
- Syst. study of production of $\Xi^{-}(1321)$ (S= 2)

Feasibility studies on-going in Krakow Λ (1520) yields (σ =40 μb at T=5 GeV)

	10 ⁸ p/s	5*10 ⁵ π/s
	Proton Beam	Pion Beam
HADES only		
Carbon Target	52/day	0.2/day
Hydrogen Target	13.2/day	0.2/day
HADES and FW		
Carbon Target	128.3/day	0.5/day
Hydrogen Target	32.6/day	0.7/day

HADES collab. PRL 103 (2009) 132310 HADES collab. PRL 114 (2015) 212301

HADES @SIS100 (I) hadronic matter studies

• 2022 (or later ?) :

HADES will move to the CBM cave \rightarrow HADES experiments with SIS100

p and ion beams, possibly pions in future....

A+A and p+A (cold matter): acceptance complementary to CBM

Observables:

Emissivity of matter (dielectrons) Flavor production (multistrange, charm) correlations and fluctuations (photons,hadrons)

HADES @SIS100 (II) hadronic physics studies

pp at a few GeV: no LH2 target in CBM
 reference for hadronic matter studies (A+A,p+A)
 M<1 GeV/c² vector mesons melting
 M>1 GeV/c² p-a1 mixing, radiation from multipion states
 But also intrinsic interest:ideal tool for hadronic physics (E<29 GeV) inclusive meson cross sections:

 $\pi^{\pm}, \, K^{\pm}, \, \pi^{0} \, / \eta \rightarrow \gamma \gamma, \, \omega \rightarrow \pi^{0} \pi^{+} \pi^{-}, \, \rho \ \rightarrow \pi^{+} \pi^{-}, \, \varphi \ \rightarrow K^{+} K^{-}, \, \eta' \rightarrow \pi^{0} \pi^{+} \pi, \, J/psi \rightarrow e^{+}e^{-}$

Neutral meson Dalitz decays (EM transition form factor):

 $\eta \rightarrow \gamma e^+ e^-, \omega \rightarrow \pi^0 e^+ e^-, \eta' \rightarrow \gamma e^+ e^-, \phi \rightarrow \eta e^+ e^-$

■ Dalitz decays of Hyperons tagged by K⁺ (or Λ) (EM transition form factor): pp \rightarrow pK⁺Y (any hyperon)X \rightarrow pK⁺e⁺e⁻ Λ higher cross-sections than at SIS18 synergy with PANDA

Transition from hadron (resonance decays) to quark degrees of freedom in e⁺e⁻ production (Drell-Yan) (access to nucleon structure functions: TMD) ? synergy with PANDA

Conclusion

- HADES is a very productive experiment
 - on-going experimental programme at SIS18 (π , p, A beams) + (p, A targets)
 - future plans at SIS100 (A+A E<8 AGeV; p+p, p+A E<29 GeV)
- Versatile set-up: contribution to studies of hadronic matter, baryon spectroscopy, but also dark matter (heavy photon), probably also Short Range Correlations in near future
- Urgent! Strengthen the involvment of IN2P3 in HADES
 - SIS18: Exploit the π beam (unique tool for baryon spectroscopy and reference measurements for medium effects)
 - SIS100: hyperon studies
 - Joint HADES-PANDA activities at SIS18 (GSI)
 - \rightarrow Capitalize on strong IN2P3 involvment in HADES (and PANDA)

 \rightarrow Keep open the possibility of French hadronic physics activities at PANDA

Man-power and collaborations (HADES)

Post-doc (HADES/PANDA)

Malgorzata Gumberidze(Sudol): 30% HADES from 2010 to 2012 Ermias Atomssa (Oct. 2013-Oct. 2016, 20% HADES)

- PhD Thesis: T. Liu: Dec 2010
 - H. Kuc (French embassy+IPN+ParisXI, co-direction with Cracow/P. Salabura, Dec. 2014)
 - F. Scozzi (P2IO Labex + TU Darmstadt, co-direction with T. Galatyuk, Oct.2014-Oct. 2017)
 - A. Belounnas (ED Pheniics grant, Oct. 2016-Oct.2019)

• Permanent : B.R.

with contributions from R. Kunne (Tests of liquid hydrogen target, data analysis), J. Van de Wiele (phenomenology) and T.Hennino (former active participant, now retired)

• Collaborations :

HADES groups Krakow, GSI/Darmstadt Theory groups: Bonn-Gatchina (A. Sarantsev), Giessen (V. Shklyar,C. Fischer), IST Lisbon (T.Pena), M. Zetenyi (Budapest), B.Friman(GSI) Collaboration agreement: IN2P3/GSI and IN2P3/Poland

Responsibilities and Scientific Output

\checkmark Construction \rightarrow transfer of responsibility to GSI in 2014-2015

- 6 largest HADES drift chambers
- Liquid Hydrogen target

✓ Data analysis (analysis coordination, publication as main author or internal review committees) dilepton, one pion, two-pion production in pp/pn/ π p reactions

- Pion Beam optics calculations
- ✓ Organization of meetings
 - Pion beam experiments meeting Orsay (2009)
 - Collaboration meetings (Seillac 2011 and fall 2016)
 - Joint HADES-WASA meeting in Orsay (April 2013)
 - Session on electromagnetic form factors at a RRTF meeting in GSI
 - Organization of an ECT* meeting in 2017
 - Labex funds for a meeting in 2018

Chairs of Collaboration Board (T. Hennino (2001-2007), B.R (2015-2018))

Scientific Output

✓ 25 publications, significant contribution of IPNO to 8 publications
 (3 with full responsibility)

- ✓ 10 conference proceedings (IPNO speakers)
- \checkmark 14 talks at conferences and workshops (7 invited) + 5 seminars
- ✓ ~ 8 talks/year at collaboration meetings, GDR, Mesonnet

Consistency of hadronic description of Chiral Symmetry Restoration – removal of ρ/a_1 mass splitting

M. Holher & R.Rapp

- Use spectral functions of ρ constrained by e+e- data
- Use (μ_b=0) results on evolution of quark/gluon condensates with T from lattice QCD
- Use QCD sum rules (spectral functions ↔ quark and gluon condensates) and Weinberg sum rules (spectra functions of Vector (ρ) ↔ Axial vector (a₁) states)
- Predict evolution of a₁ spectral function in T up to T_c

