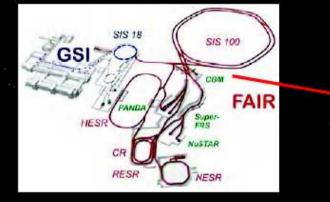
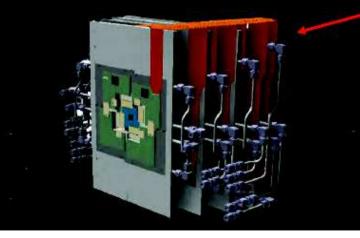
CMOS Pixel Sensors for the CBM Micro-Vertex Detector

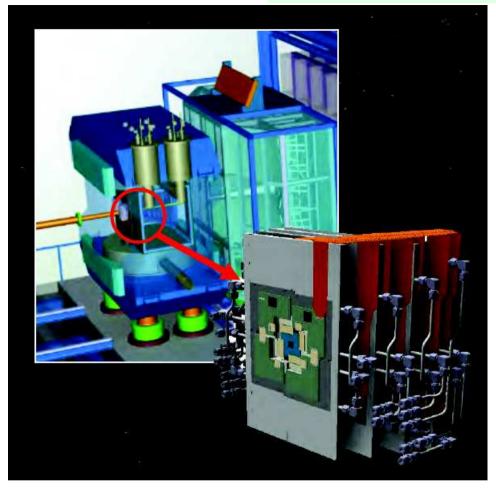

M.Winter / IPHC, 18 May 2017


- Introduction: the CBM-MVD
- MIMOSIS: the CMOS Pixel Sensor for the MVD
- Develoment context and plans
- Summary

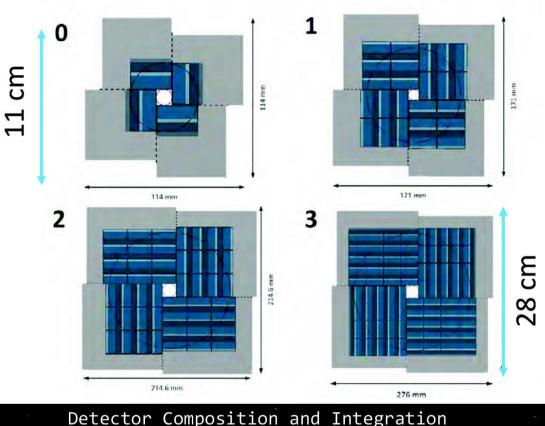
The CBM Micro-Vertex Detector

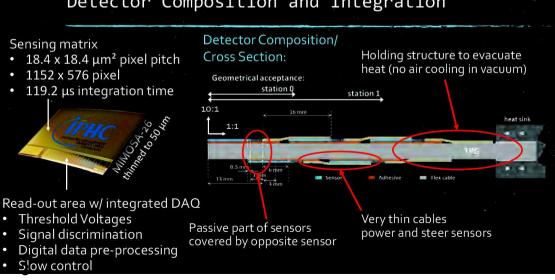
FAIR @ Darmstadt, Germany

The CBM - MVD

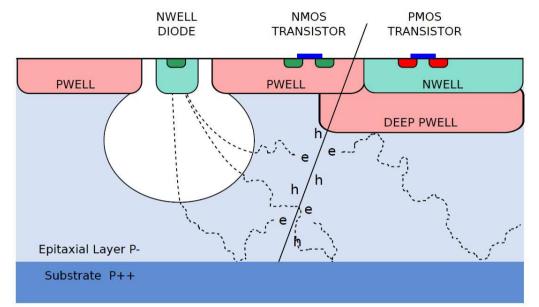


The fixed-target CBM experiment




• 4 double-sided stations located at 5, 10, 15, 20 cm behind the target

The CBM Micro-Vertex Detector


- MVD based on 50 μm thin CMOS sensors
 - $_\circ\,$ single point resolution: 5 μm x 5 μm
 - $_\circ\,$ time resolution: 5 μs
 - $_{\circ}\,$ power consumption \lesssim 200–350 mW/cm $^{2}\,$
 - radiation tol. (-20°C): 3 MRad, $3 \cdot 10^{13} n_{eq}$ /cm²

CMOS Pixel Sensors (CPS): Main Features

- CPS fabricated via industrial processes used for ASIC production
 - $_{\rm o}\,$ Thin sensitive volume (e.g. 20 40 μm)
 - Full signal processing micro-circuitry integrated on chip (low noise !)
 - \Rightarrow Very modest material budget: \sim 0.05 % X $_0$
- CPS provide O(μm) spatial resolution
 - $_\circ\,$ Small pixels: typically 20-30 μm x 20-30 μm
 - Charge sharing between neighbouring pixels
 - \Rightarrow binary charge encoding often sufficient
- Read-out speed & radiation tolerance
 - Usually the main R&D drivers
 - In conflict with small pixels, low power, thin sensitive volume, etc.
- CPS used successfuly in STAR-RHIC/BNL (2014-16), presently produced for ALICE-ITS&MFT (30,000 sensors)

CPS Design Required for the MVD: MIMOSIS Sensor

- MIMOSIS derived from ALPIDE pixel array read-out architecture (ITS, MFT)
- Required radiation tolerance significantly higher than ALPIDE

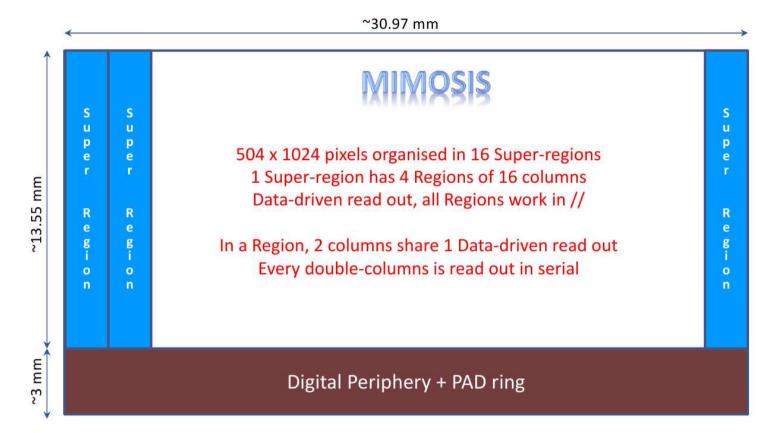
 $(\gtrsim$ 10 times higher locally)

• Required data throughtput \sim 10 times higher than ALPIDE

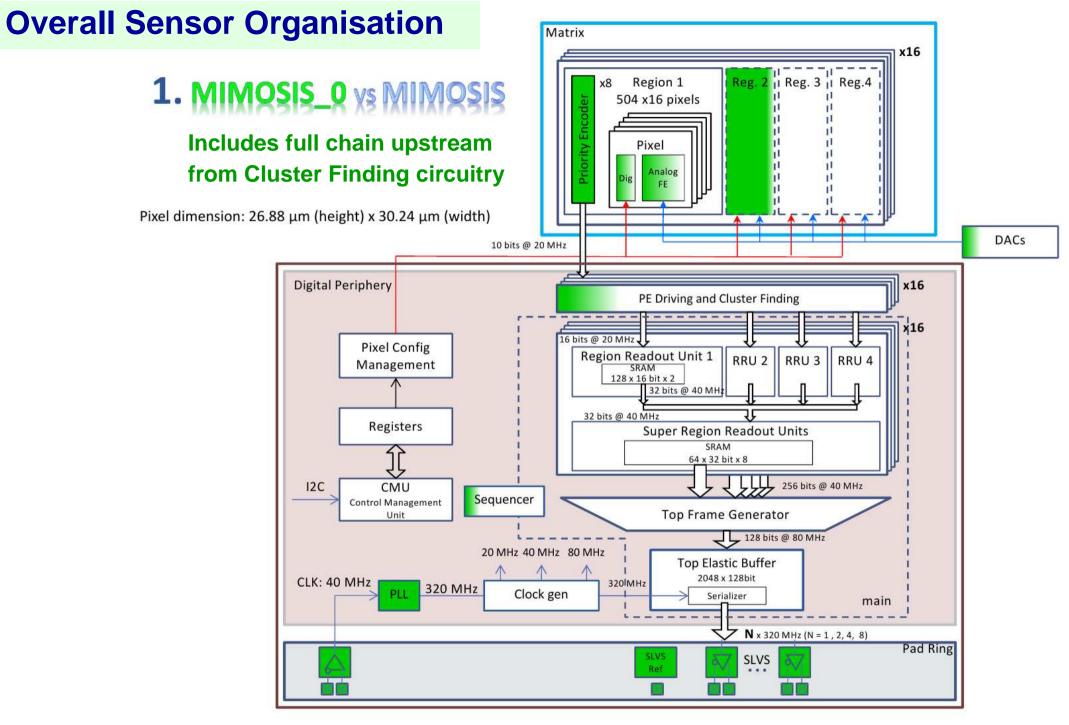
(hit density actually up to $\sim 10^2$ times higher locally)

	ITS (IB)	CBM (1 st station)
Radiation Load TID	~270 krad	3 Mrad @ -20°C, 1 Mrad @ +30°C
Radiation Load NIEL	~1,7x10 ¹² 1MeV n _{eq} /cm ²	3x10 ¹³ n _{eq} /cm ² @-20°C, 1x10 ¹³ n _{eq} /cm ² @+30°C
Peak hit rate	~1,25x10 ⁶ /cm²/s → 1,25x10 ⁴ /mm²/s	7x10 ⁵ /mm ² /s (x 56 times than ITS)
Trigger	yes	no
Heavy Ion Effect		

• Fully revisited digital circuitry (data sparsification & transfer logic)


IPHC Team developing the MIMOSIS Sensor

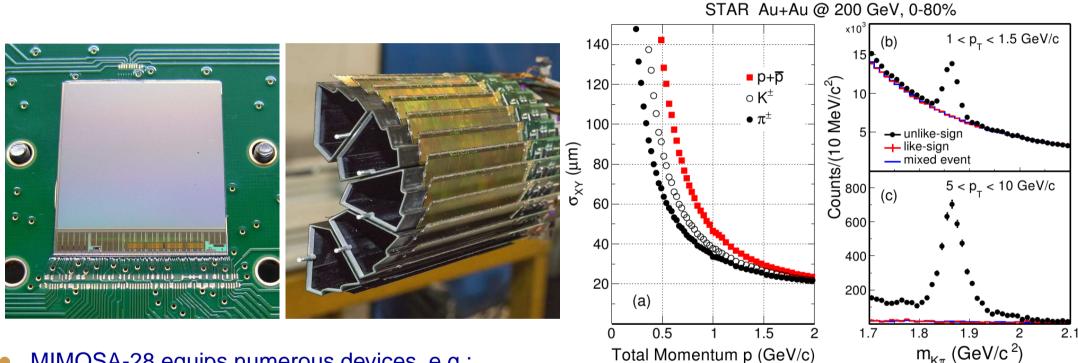
• Development started in 2003


- \hookrightarrow R&D went through numerous different intermediate applications
- IPHC-PICSEL team members involved presently:
 - physicist: M.Winter
 - $\circ \mu$ -circuit designers: A.Dorokhov, G.Dozière, A.Himmi, Ch.Hu-Guo, F.Morel,
 - H.Pham, I.Valin, Y.Zhao
 - electronics engineers: G.Claus, M.Goffe
- Responsibility: realisation of the MVD sensor MIMOSIS
 - sensor design
 - foundry runs of consecutive prototypes
 - electronics/functionnal tests of prototypes
 - prototypes' detection performance assessment (in collaboration with IKF-Frankfurt)

MIMOSIS Overview

- Pixel dimensions
 26.88 μm x 30.24 μm
- In-pixel discrimination
- Binary charge encoding
- Data driven read-out

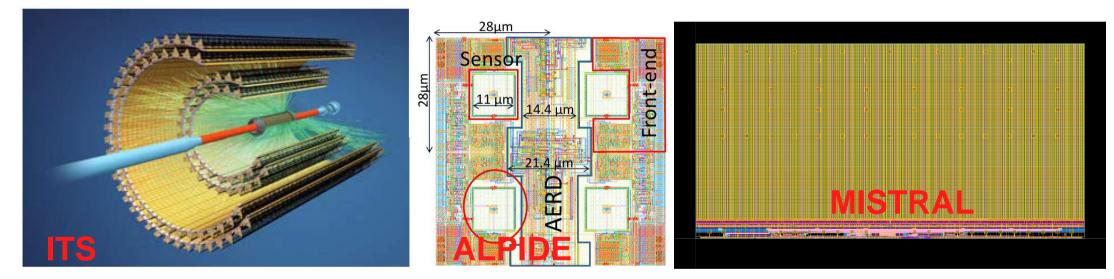
- MIMOSIS development plan:
 - MIMOSIS-0: portion of pixel array with 2 diff. pixel designs \rightarrow submitted in May/'17
 - MIMOSIS-1: 1st prototype of complete sensor, to be submitted in \gtrsim Q2/'18
 - MIMOSIS-2: 2nd prototype of complete sensor, to be submitted in \gtrsim Q2/'19
 - MIMOSIS-3: final sensor pre-production, to be submitted early in 2020



SUMMARY

- CBM-MVD:
 - requires very high precision in challenging running conditions
 - will be equipped with CPS designed and developed at PHC-Strasbourg
 - based on > 10 years of fruitful partnership between IPHC and IKF(+GSI)
- Technological aspects:
 - well defined CPS development plan until 2020
 - challenging devopment: no table ready solution available
 - will become the state-of-the-art (CPS, whole detector)
- Partnership extension :
 - CPS detection performance and radiation tolerance assessment
 - contribution to system integration studies and preparation for assembly
 - N.B.: acquired expertise addresses a very promising instrumentation domain
 - numerous spin-offs

Achievement: MIMOSA-28 & STAR-PXL Detector (+ spin-offs)


MIMOSA-28: 1st CPS equipping a subatomic phys. experiment (STAR at RHIC/BNL) $\sigma_{R\Phi,Z} \simeq$ 3.7 μm ; thickness \simeq 50 μm ; 970,000 pixels over 2x2 cm²; > 10⁶ part./cm²/s 3 date taking campaigns (2014–16) \Rightarrow state-of-the-art of the technology

- MIMOSA-28 equips numerous devices, e.g.:
 - AIDA BT: 4 millions of pixels per plane (4x4 cm 2 , < 0.1% X $_0$)
 - BT part of LNF permanent infrastructure (450 MeV e⁻) •
 - telescope for hadrontherapy (GSI), etc. •
 - demonstrator for inner tracker upgrade of BES-3 expt. at BEPC/IHEP

Achievement: 2 sensors for ALICE-ITS (LHC)

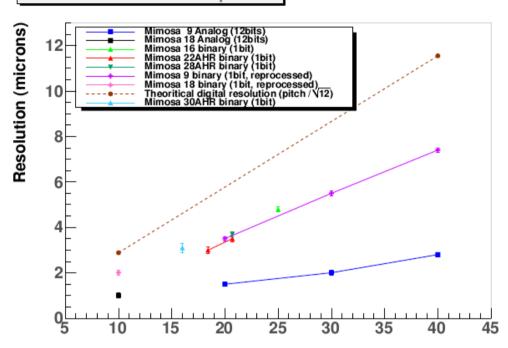
- Objective: 1st pixellated inner tracker (> 10 m^2 sensitive area, 25,000 CPS)
- More demanding requirements than for STAR-PXL (MIMOSA-28)
 - \Rightarrow evolution toward more advanced technology: TowerJazz 0.18 μm
- 2 approaches: MISTRAL: extension of MIMOSA-28 (STAR-PXL) validated & robust
 - ALPIDE: extrapolation from hybrid pixels higher perfo. but less robust & understood

	σ_{sp}	t _{r.o.}	Dose	Fluency	T_{op}	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3{\cdot}10^{12}~{ m n}_{eq}$ /cm 2	30-35°C	160 mW/cm 2	$0.15 \mathrm{~m}^2$
ITS-in	\lesssim 5 μm	\lesssim 30 μs	2.7 MRad	1.7 \cdot 10 13 n $_{eq}$ /cm 2	30°C	$<$ 300 mW/cm 2	$0.17~\mathrm{m}^2$
ITS-out	\lesssim 10 μm	\lesssim 30 μs	15 kRad	4·10 11 n $_{eq}$ /cm 2	$30^{\circ}C$	$<$ 100 mW/cm 2	\sim 10 m 2

Measured Spatial Resolution

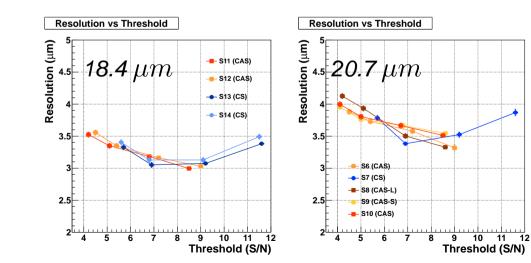
- Several parametres govern the spatial resolution :
 - pixel pitch
 - epitaxial layer thickness and resistivity
 - sensing node geometry & electrical properties
 - signal encoding resolution

 $\Rightarrow \sigma_{sp}$ fct of pitch \oplus SNR \oplus charge sharing \oplus ADCu, ...

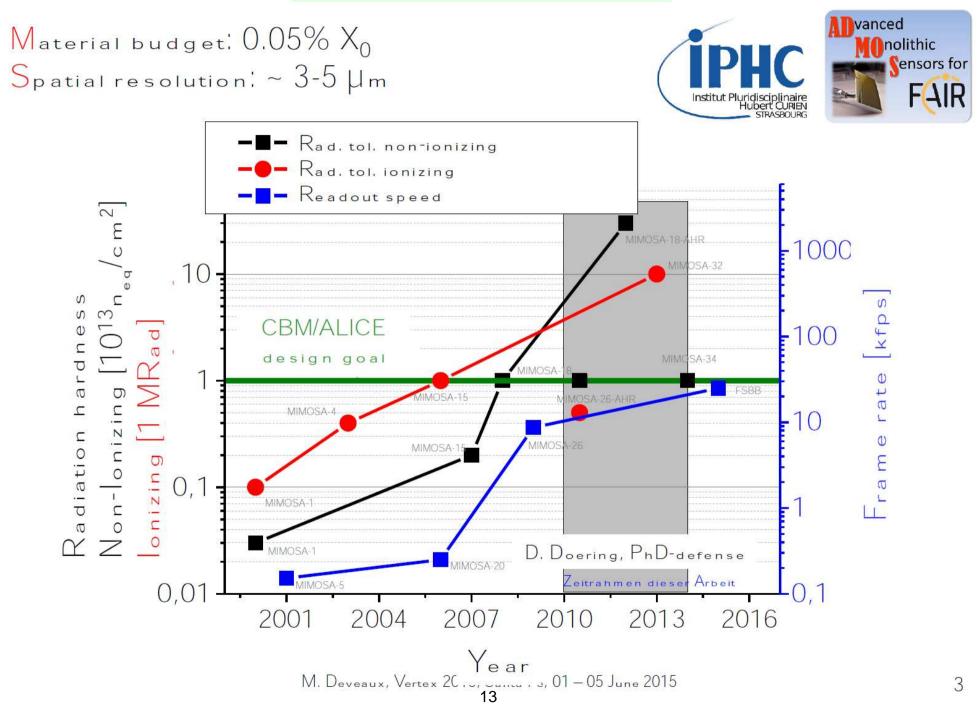

Impact of pixel pitch (analog output) :

 $\sigma_{f sp} \sim {f 1} \; \mu{f m}$ (10 μm pitch) $ightarrow \, \lesssim {f 3} \; \mu{f m}$ (40 μm pitch)

Impact of charge encoding resolution :


$$\,\,>\,\,$$
 ex. of 20 μm pitch $\,\,\Rightarrow\,\,\,\sigma^{digi}_{sp}$ = pitch/ $\sqrt{12}$ \sim 5.7 μm

Nb of bits	12	3-4	1
Data	measured	reprocessed	measured
σ_{sp}	\lesssim 1.5 μm	\lesssim 2 μm	\lesssim 3.5 μm



Mimosa resolution vs pitch

pitch (microns)

Radiation Tolerance

Speed vs Pixel Dimensions

- Pixel dimensions govern the spatial resolution at the expense of read-out speed
 - \Rightarrow Trade-off to be found specific to each application

Pixel pitch	$<$ 10 μm	\gtrsim 15 μm	$>$ 20 μm	\gtrsim 25 μm	\lesssim 50 μm
Nb(T)	2–3	15	\gtrsim 50	\gtrsim 200	HV: few 10^2
σ_{sp} [μm]	\lesssim 1x1	< 3x3	< 5x5	\lesssim 5x5	\gtrsim 10x10
Δt [μs]	10 ³	\lesssim 30/200	\gtrsim 10-15	< 10	10^{-2}
Pre-Amp+Filter	Out	In-Pix	In-Pix	In-Pix	In-Pix
Discrimination	Out	Out	In-Pix	In-Pix	In-Pix
Sparsification	Out	Out	Out	In-Pix	In-Pix
Ex.(chip)	Mimosa-18	ULTIMATE/MISTRAL	ASTRAL	ALPIDE	HV-CMOS
Depleted	No	No	No	Yes	YES
CMOS Process	AMS-0.35	AMS-0.35/Tower-0.18	Tower-0.18	Tower-0.18	AMS-0.35/0.18
Ex.(appli.)	Beam Tele.	STAR-PXL/ALICE-ITS	ALICE-ITS	ALICE-ITS	LHC ?