

APPA Plamas: The plasma physics program at FAIR

FAIR is a very attractive driver for plasma physics

- FAIR is pertinent to plasma physics with applications to some outstanding planetary science questions.
- Compared to other drivers, FAIR offers many unique advantages: quasi-equilibrium and mesoscopic scales.
- FAIR-generated plasma require powerful diagnostics.
 - pump-probe setups are standard in plasma physics
 - laser-generated sources of particles (ions, electrons) used to generate tertiary sources (neutrons, X-rays) offer the most promising solution for direct measurement of plasma parameters

Plasma physics infrastructure at GSI and FAIR

FAIR-generated plasmas are complementary to those obtained with other drivers

65 mm Ne¹⁰⁺ 300 MeV/u; Kr crystal

large sample volume (mm³) uniform physical conditions any target material long time scales (50 ns) High-brilliance XUV photon sources (XFEL & DESY)

small sample volume (100 µm³)
high gradients
low-Z target material
short time scales (100 fs)

- Advantages of FAIR-generated plasma:
 - large samples
 - local thermodynamical equilibrium
 - uniform samples

FAIR offers a unique alternative to other driver techniques

FAIR is ideal to study iron using the LAPLAS scheme

S. Anzellini et al., Science **340**, 466 (2013)

D. Alfè et al., Phys. Rev. B 79, 060101 (2009)

E. Sola et al., Phys. Rev. Lett. 103, 078501 (2009)

A. B. Belonoshko et al., Phys. Rev. Lett. 84, 3638 (2000)

^{*} calculations by N. Tahir (to be published)

Ionization potential depression will be studied at FAIR (already in phase 0)

- Ionization Potential Depression (IPD) is an outstanding issue in plasma physics
- Recent experiments in dense plasmas shows significant discrepancies

FEL- and Laser-produced plasmas: hot, highly non-equilibrium,

- Rapid heating by intense heavy-ion pulse
- Hydro-expansion to ρ =10%...50% ρ_0

Experiment at FAIR will access transition from metal to dense atomic gas

- K-edge shift
- M-shell rebinding

Status of the plasma physics Beamline

TDR submitted in Q4/2016

- Most TDRs are approved
- The last TDRs are being evaluated

Technical WP are defined, project management plans created Target chamber Final focusing system revised TDR TDR approved Contract with IHEP signed submitted Q4/2016 **Detectors** TDR approved R&D funding (BMBF) THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO I **Diagnostic laser** PETER BET Data acquisition TDR approved TDR approved R&D funding (BMBF) **RF Wobbler** Matching section & vacuum & beam diagnostics TDR approved TDR submitted in Q4/2016 **PRIOR**

The Helmholtz Beamline at FAIR

Time-line

- in the phase 0:
 - preparation experiments with PHELIX 12 campaigns/years
 - PRIOR (from 2018)
 - R&D: Diagnostics/Laser
- in the starting phase (day 1)
 - PRIOR
 - HIHEX scheme
 - 100 J laser

FAIR is a very attractive driver for plasma physics

- FAIR is pertinent to plasma physics with applications to some outstanding planetary science questions.
- Compared to other drivers, FAIR offers many unique advantages: quasi-equilibrium and mesoscopic scales.
- FAIR-generated plasma require powerful diagnostics.
 - pump-probe setups are standard in plasma physics
 - laser-generated sources of particles (ions, electrons) used to generate tertiary sources (neutrons, X-rays) offer the most promising solution for direct measurement of plasma parameters

