

Feasibility studies for the measurement of electromagnetic channels with PANDA

FAIR-FRANCE meeting, 17 May 2017 Orsay

The PANDA multipurpose detector

- Meson spectroscopy: D mesons, charmonia
- Search for exotic QCD states: glueballs, tetraquarks, hybrids, molecules...
- Single and Double hypernuclei
- Hadrons in nuclear matter
- Nucleon structure

Very large overlap with research fields at IN2P3

High Energy Storage Ring Antiprotons p= 1.5-15 GeV/c High res. mode $L_{peak}=2x10^{31}/cm^2/s \delta p/p=10^{-5}$ High lumi mode $L_{peak}=2x10^{32}/cm^2/s \delta p/p=10^{-4}$

AntiProton ANnihilation at Darmstadt

involvment of IPNO in PANDA (I)

Start of involvment 2004

- nucleon structure studies
- R&D on the barrel calorimeter
- Contribution to the simulation and analysis code (PANDARoot)

7 permanents up to end of 2014

T. Hennino (CNRS, retired 2015) S. Ong (prof. University of Amiens, retired 2015)

J. Van de Wiele (CNRS, emeritus 2015),

- B.R. (CNRS)
- D. Marchand (CNRS)
- E. Tomasi-Gustafsson (CEA)

R. Kunne (CNRS)

- 2 Post-docs: Malgorzata Gumberidze: 2008-2012 (30% HADES from 2010 to 2012) Ermias Atomssa (Oct. 2013-Oct. 2016, 20% HADES)
- 4 PhDs: Jérôme Boucher (Sept. 2011) (IPNO/Mainz) Binsong Ma (Sept. 2014)

Involvment of RDD group ~ 1 FTE/year B. Gajewski, M. Imre, C. Le Galliard, G. Minier, P. Rosier, L. Seminor A. Maroni, C. Theneau...

Alaa Dbeyssi (Sept. 2013),

Wang Ying (\rightarrow July 2017)

involvment of IPNO in PANDA (II)

Responsibilities in PANDA

- Collaboration Board (2 votes) FAIR Ressource Review Board (T. Hennino, D. Guillemaud-Müller) - Technical board (P. Rosier/R&D detectors)
- **Speakers committee** T. Hennino (2009-2011), E. Tomasi-Gustafsson (2011, chair 2012), B. R. (2013-2014)
- Coordination of the **working group on Electromagnetic processes** (D. Marchand, B. R.) <u>Scientific production (phenomenology, feasibility studies</u>):
- Phenomenology, feasibility studies:17 **Peer-reviewed journals** +14 **conf. proceedings**
- PANDA TDRs : contribution to EMC and STT TDRs
- 1 technical and 1 release note (RN) fully written at IPNO, 1 RN in collaboration with Mainz
- 26 talks (10 invited) ; > 37 presentations to PANDA coll. meetings , 20 audioconf.

Substantial financial support from IN2P3 (20-30 k€/year) but no recruitment.

✓ September 2014: IPN/IN2P3 decision (based on manpower and budget)

No contribution to PANDA construction/MOU

2017: finalization of the activities of the IPNO group

 \rightarrow reorientation on new activities (HADES, Jlab, Prorad)

How to revive a contribution of IN2P3 to PANDA?

R & D on the barrel calorimeter

The barrel calorimeter: 11520 PbWO4 crystals

- General layout and integration (TDR)
- Optical glue studies (A. Dbeyssi et al; NIM A722 (2013) 82)
- Design of the cooling system (-25°C)
- Participation in construction of two prototypes and corresponding tests
- EoI (now cancelled): 300 keuros for EMC cooling
- transfer of know-how to Bochum/Giessen in Spring 2015

PANDA still seeks technical contributions (e.g. Forward Tracker) is a contribution of IN2P3 a possible option ?

1/3 of the 120 crystal prototype

Using time-like electromagnetic processes for nucleon structure studies

Access to p- π Transition Distribution Amplitudes

- Information on the pionic components of the nucleon wave function
- Independent of reaction type, s and q² complementary to GPD
- Accessible in associated meson prod. in pp annihilation (and backw. meson electroprod.)
 J.-P. Lansberg et al., Phys. Rev. D 76, 111502 (2007); Phys. Rev. D85, 054021 (2012)

B. Pire et al. Phys. Lett. B 724 99-107 (2013)

Analysis at Mainz B. P. Singh et al. [PANDA collaboration] Eur. Phys. J. A (2015) 51:107

17-18 May 2017

Full feasibility study of TDA in $\bar{p}p \rightarrow \pi^0 J/\psi (J/\psi \rightarrow e^+e^-)$

s= 12.3, 16.9, 24.3 GeV² (p_p= 5.5, 8, 12 GeV/c)

B. P. Singh et al. [PANDA collaboration] Phys.Rev. D95 (2017) 032003

Very promising results for TDA studies N.B. Possibility of measurement in parallel with charmonium studies: X(3872), Y(4260),... (no or rare decay to $J/\psi \pi^0$, $J/\psi \pi^0 \pi^0$ or multipion channels)

PANDA as an hyperon factory

For example: measure $\Sigma \rightarrow \Lambda e^+e^-$ Dalitz decay branching ratio unknown \cdot Prediction 510⁻³

Interest and feasibility studies: Cracow, Jülich, Uppsala

multistrange baryons

- many states predicted below 3 GeV/ very few observed
- Cross section for pp→Y*Y similar to pp→YY at similar energy above threshold
- determine branching to various decay modes:

 $\Xi \pi$, $\Xi \pi^+ \pi^-$, $\Xi \pi^0 \pi^0$, ΛK^- , $\Sigma \overline{K}$, $\Xi \eta$, $\Xi \eta \pi$, $\Xi \eta'$, $\Xi \omega$, $\Xi \phi$, ...

• On-going feasibility studies in the PANDA collaboration:

$$p\bar{p} \rightarrow \Xi^+\Xi(1521)^- \rightarrow \Xi^+\Lambda K^-$$
 and $p\bar{p} \rightarrow \Xi^+\Xi(1820)^- \rightarrow \Xi^+\Lambda K^-$

17-18 May 2017

PANDA Phase 0 with HADES

PANDA pre-series and prototype detectors for the Forward tracker used in HADES

STS1 (Jülich) 640 tubes (use later for FT3/4 in PANDA) STS2 (Krakow, Orsay) 900 tubes (same technology as FT5/6) (4 double layers each)

- Financial contribution to construction of STS2 in Krakow
- Construction of frames and support in Orsay

Joint HADES/PANDA interest on Time like baryon structure and Hyperon studies

Tagging via $\Lambda \rightarrow p\pi^{-}$

- Radiative transitions not well known Y $\rightarrow \Lambda \gamma$
- No data at all for Dalitz decay: $Y \rightarrow \Lambda e^+ e$

(sensitivity to timelike electromagnetic structure)

See talk on HADES

Conclusion

• Large overlap between IN2P3 and PANDA physics (charmonium, nucleon structure, medium effects,...see F. Maas talk)

 \rightarrow FAIR should attract interest of French hadronic physics experts in the next years

- Urgent! Strengthen the present joint HADES-PANDA activities at SIS18 (GSI)
 - capitalize on strong IN2P3 involvment in HADES and PANDA
 - keep open the possibility of French hadronic physics activities at FAIR (HADES and PANDA)

PANDA collaboration

Ξ(1820)

~5 % exclusive efficiency for $\Xi^+\Xi^{*-}$ (1820)

Low background level \rightarrow ~15000 exclusive events / day

Time Like Electromagnetic proton form factors with PANDA

Access to the unphysical region $q^2 < 4 m_p^2$ $\bar{p}d \rightarrow ne^+e^-$ *H. Fonvieille and V.A. Karmanov EPJA42 (2009) 287-298.* $\bar{p}p^{18} \rightarrow \pi^{0}e^+e^-$ Feasibility studies by 3. Boucher F, PhD Chilleersity Paris-Sud, 2011). ¹⁵

Further prospects for TL form factor studies with PANDA

- Measurement of $|G_E|$ and $|G_M|$ in $\overline{pp} \rightarrow \mu^+\mu^-$ On-going PhD work I.Zimmermann (Mainz) Contamination by $\overline{pp} \rightarrow \pi^+ \pi^- S/B^{-1/4}$
- Measurements of the proton form factors in the unphysical region $q^2 < 4 m_p^2$ $pd \rightarrow ne^+e^-$ *H. Fonvieille and V.A. Karmanov EPJA42 (2009) 287-298.* $pp \rightarrow \pi^0 e^+e^-$ Feasibility studies by *J. Boucher*, *PhD University Paris-Sud*, *2011).*
- Possibility to access the relative phase of $G_{\rm E}$ and $G_{\rm M}$:

Transverse spin asymmetry \rightarrow Im($G_E G_M^*$) Development of a transverse polarized proton target for PANDA in Mainz on-going PhD work B. Fröhlich (Mainz)

• Study of hadronic channels: background for electromagnetic channels and reaction mechanisms *on-going PhD work Wang Ying (Orsay)*

PANDA EMP @ "phase one" (P1)

Signal	Physics	Comments on the process or the physics	Phase	
$\overline{p}p \to e^+ e^-$	FFs	High precision Large momentum range	1 (competition from BESIII)	
$\overline{p}p \to \mu^+ \mu^-$	FFs	The process is unique for PANDA	1 (Limited precision)	
$\overline{p}p \to e^+ e^- \pi^0$	FFs below threshold	Unique for PANDA	1	
$\overline{p}p \to \gamma^* \pi^0$ $\overline{p}p \to J / \psi \pi^0$	TDAs	The processes are unique for PANDA	3	
$\frac{\overline{p}p \to \gamma\gamma}{\overline{p}p \to \pi^0\gamma}$	GDAs	The process (with pi0) Is unique for PANDA	l (Lack of person power)	
$\overline{p}p \to \mu^+ \mu^- X$	TMD PDFs		3	

Phenomenological works related to TL form factors

Radiative Corrections

J. Van de Wiele and S. Ong, EPJ A 49 (2013) 18. E. Tomasi-Gustafsson et al, PRC83 (2011) 04520.

- Heavy leptons and Polarisation E. Tomasi-Gustafsson et al, NPA 894 (2012) 20 and PRC83 (2011) 025202.
- Crossed channels and TL-SL Unification E. Tomasi-Gustafsson et al, PLB 712 (2012) 240.
- Reaction mechanisms

E. Tomasi-Gustafsson et al, NPA 920 (2013) 45.

Hadronic channels

E. Tomasi-Gustafsson et al, EPJA 46 (2011) 91. J. Van de Wiele and S. Ong, EPJA 46 (2010) 291 and EPJ C73 (2013) 2640. W. Ying et al. arXiv:1512.05520, subm. to Phys. Lett. B W. Ying JPCS 742 ,012021

Competitiveness

LHCb

- large number of Ξ and Ω observed
- spectroscopy in the light quark sector, *J*^P determination?
- neutrals in final state difficult
- Belle 2
 - small Υ and *B* branching to baryon-antibaryon final states

GlueX, CLAS-12

- small production cross section, no state seen above $\Xi(1530)$
- J-PARC
 - K^- beam, but so far focussed on missing mass experiments

> PANDA is the best experiment for hyperon spectroscopy !

Simulation and analysis code developments for PANDA

- Particle IDentification (Bayesian methods/ GEANT hadronic models sensitivity)
- Bremsstrahlung correction using photon detection in EMC B. Ma, PhD, Univ. Paris-Sud. Sept 2014.

• Event Filtering (trigger): fast selection of em channels/suppression of hadronic channels

Status of $\Xi^{\hat{}}$ Resonances: RPP

Chin. Phys. C 38 (2014) 090001

 $\begin{array}{c} 2014\\ \text{Table 1. The status of the Ξ resonances. Only those with an overall status of *** or **** are included in the Baryon Summary Table. \end{array}$

				Status as seen in —				
	Particle	J^P	Overall status	Ξπ	ΛK	ΣK	$\Xi(1530)\pi$	Other channels
	$\Xi(1318)$ $\Xi(1530)$ $\Xi(1620)$ $\Xi(1690)$	1/2+ ? 3/2+	**** **** * ***	**** *	***	**		Decays weakly
s d	$\Xi(1820)$ $\Xi(1950)$ $\Xi(2030)$ $\Xi(2120)$	3/2-?	*** *** ***	** **	*** ** **	** ***	** *	
	$\Xi(2250)$ $\Xi(2370)$ $\Xi(2500)$		** ** *		*	*		3-body decays 3-body decays 3-body decays

Ξ(1820):

Teodoro78 favors J = 3/2, but cannot make a parity discrimination. Biagi 87c is consistent with J = 3/2 and favors negative parity for this J value.

**** Existence is certain, and properties are at least fairly well explored.

- *** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.
- ** Evidence of existence is only fair.
 - * Evidence of existence is poor. B. Ramstein FAIR-France meeting.

SU(6) x O(3) Classification

RPP 2014: Chin. Phys. C 38 (2014) 090001

"Assignments for ...

 $\Xi(1820)$ and $\Xi(2030)$, are merely

educated guesses."

Ξ(1690), Ξ(1950):

T. Melde et al., PRD 77 (2008) 114002

 J^P $(D, L_N^P)S$ Octet members Singlets $(56,0^+_0) \ 1/2 N(939) \ \Lambda(1116) \ \Sigma(1193)$ $\Xi(1318)$ $1/2^{+}$ $(56,0^+_2) \ 1/2 N(1440) \Lambda(1600) \ \Sigma(1660)$ $\Xi(1690)^{\dagger}$ $1/2^{+}$ $1/2^{-}$ (70,1⁻₁) $1/2 N(1535) \Lambda(1670)$ $\Sigma(1620)$ $\Xi(?)$ $\Lambda(1405)$ $\Sigma(1560)^{\dagger}$ $3/2^{-}$ (70,1⁻₁) $1/2 N(1520) \Lambda(1690) \Sigma(1670)$ $\Xi(1820)$ $\Lambda(1520)$ $(70,1_1^-) \ 3/2 N(1650) \Lambda(1800)$ $\Sigma(1750)$ $\Xi(?)$ $1/2^{-}$ $\Sigma(1620)^{\dagger}$ $\Sigma(1940)^{\dagger}$ $\Xi(?)$ $3/2^{-}$ (70,1⁻) $3/2 N(1700) \Lambda(?)$ $(70,1_1^-) \ 3/2 N(1675) \Lambda(1830)$ $\Sigma(1775)$ $\Xi(1950)$ $5/2^{-}$ $(70,0^+_2) \ 1/2 N(1710) \Lambda(1810)$ $\Xi(?)$ $\Lambda(1810)^{\dagger}$ $1/2^{+}$ $\Sigma(1880)$ $(56,2^+_2) \ 1/2 N(1720) \Lambda(1890)$ $\Xi(?)$ $\Sigma(?)$ $3/2^{+}$ *Phys.Rev.* D95 (20/27) (382003/2N(1680) Λ(1820) $\Sigma(1915)$ $\Xi(2030)$ $(70,3^{-}_{3}) \ 1/2 N(2190) \Lambda(?)$ $\Sigma(?)$ $\Xi(?)$ $\Lambda(2100)$ $7/2^{-}$ $(70,3^{-}_{3}) \ 3/2 N(2250) \Lambda(?)$ $\Sigma(?)$ $\Xi(?)$ $9/2^{-}$ $9/2^+$ (56,4⁺₄) $1/2 N(2220) \Lambda(2350)$ $\Sigma(?)$ $\Xi(?)$

Decuplet members

25

$3/2^+$ (56,0 ⁺ ₀) $3/2\Delta(1232)\Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$
$3/2^+$ (56,0 ⁺ ₂) $3/2\Delta(1600)\Sigma(1690)$	Ξ(?)	$\Omega(?)$
$1/2^-$ (70,1 ⁻ ₁) $1/2\Delta(1620)\Sigma(1750)$	Ξ(?)	$\Omega(?)$
$3/2^-$ (70,1 ⁻ ₁) $1/2\Delta(1700)\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$5/2^+$ (56,2 ⁺ ₂) $3/2\Delta(1905)\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$7/2^+$ (56,2 ⁺) $3/2\Delta(1950)\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$
R-F13/20e (56,44) g $3/2\Delta(2420)\Sigma(?)$	$\Xi(?)$	$\Omega(?)$

decuplet: no Ξ^* , no Ω^*

"... nothing of significance on Ξ resonances has been added ^{17-18 May 2017} B. Ramstein FA since our 1988 edition."